Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 3, Mars 2005
Page(s) 261 - 266
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005213261
Publié en ligne 15 mars 2005
  1. Pidoux AL, Allshire RC. Centromeres : getting a grip of chromosomes. Curr Opin Cell Biol 2000; 2 : 308–19. [Google Scholar]
  2. Fukagawa T. Centromere DNA, proteins and kinetochore assembly in vertebrates cells. Chrom Res 2004; 12 : 557–67. [Google Scholar]
  3. Roos UP. Light and electron microscopy of rat kangaroo cell in mitosis II kinetochore structure and function. Chromosoma 1973; 4 : 195–220. [Google Scholar]
  4. Mehes K, Bühler EM. Premature centromere division. Am J Med Genet 1995; 56 : 76–9. [Google Scholar]
  5. Fitzgerald H, Archer SZ, Morris CM. Evidence for the repeat primary non disjunction of Chr-1as the result of premature centromere division. Hum Genet 1986; 72 : 58–62. [Google Scholar]
  6. Vig BK. Sequence of centromere separation : orderly separation of multicentric chromosomes in mouse cells. Chromosoma 1984; 90 : 39–45. [Google Scholar]
  7. Mehes G, Tarnok K, Pajor L, Mehes K. Objective analysis of centromere separation. Hum Genet 1996; 97 : 365–6. [Google Scholar]
  8. Ghosh S, Paweletz N, Schroeter D. Failure of centromere separation leads to formation of diplochromosomes in next mitosis in okadaic acid treated HeLa cells. Cell Biol Int 1993; 17 : 949–52. [Google Scholar]
  9. Van Hooser AA, Mancini M, Allis CD, et al. The mammalian centromer : structural domains and the attenuation of chromatin modelling. FASEB J 1999; 13 (suppl 2) : S216–20. [Google Scholar]
  10. Rattner JB. The structure of mamalian centromere. BioEssays 1991; 13 : 51–6. [Google Scholar]
  11. Wheatley SP, Kandels-Lewis SE, Adams RR, et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp Cell Res 2001; 262 : 122–7. [Google Scholar]
  12. Hirano T. SMC protein complexes and higher order chromosomes dynamics. Curr Opin Cell Biol 1998; 10 : 317–22. [Google Scholar]
  13. Nicklas RB. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol 1983; 987 : 542–8. [Google Scholar]
  14. Rieder CL, Cole RW, Khodjakov A, Sluder G. The chekpoint delaying anaphase in reponse to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochore. J Cell Biol 1995; 130 : 941–8. [Google Scholar]
  15. Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of α-satellite DNA domains visualized in situ in living human cells. J Cell Biol 1996; 135 : 545–57. [Google Scholar]
  16. Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerisation activity. Curr Biol 2004; 14 : 273–86. [Google Scholar]
  17. Yanagida M. Frontier questions about sister chromatid separation in anaphase. BioEssays 1995; 17 : 519–26. [Google Scholar]
  18. Koshland D, Guacci V. Sister chromatid cohesion : the beginning of a long and beautiful relationships. Curr Opin Cell Biol 2000; 12 : 297–301. [Google Scholar]
  19. Michaelis C, Ciosk R, Nasmyth K. Cohesins : chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997; 91 : 35–45. [Google Scholar]
  20. Hearing CH, Nasmyth K. Building and breaking bridges between sisters chromatids. BioEssays 2003; 25 : 1178–91. [Google Scholar]
  21. Tanaka T, Fuchs J, Loidl J, Nasmyth K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resist their precocious separation. Nat Cell Biol 2000; 2 : 492–5. [Google Scholar]
  22. Campbell JL, Cohen-Fix O. Chromosome cohesion : ring around the sisters. Trends Biochem Sci 2002; 27 : 492–5. [Google Scholar]
  23. Bernard P, Allshire RC. Centromeres become unstuck without heterochromatin. Trends Cell Biol 2002; 12 : 419–24. [Google Scholar]
  24. Losada J, Hirano T. Intermolecular DNA interactions stimulated by the cohesion complex in vitro. Implications for sister chromatides cohesion. Curr Biol 2001; 11 : 268–72. [Google Scholar]
  25. Claussen U, Mazur A, Rubtsov N. Chromosomes are highly elastic and can be stretched. Cytogenet Cell Genet 1994; 66 : 120–5. [Google Scholar]
  26. Houchmandzadeh B, Marko JF, Chatenay D, Libchaber L. Elasticity and structure of the eukaryotic chromosome studied by micromanipulation and micropipette aspiration. J Cell Biol 1997; 139 : 1–12. [Google Scholar]
  27. Houchmandzadeh B, Dimitrov S. Elasticity measurments show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 1999; 145 : 215–23. [Google Scholar]
  28. Machado C, Andrew D. D-titin : a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151 : 639–52. [Google Scholar]
  29. Machado C, Sunkel CE, Andrew D. Human antibodies reveal titin as chromosomal protein. J Cell Biol 1998; 141 : 321–33. [Google Scholar]
  30. Astier C, Labbe JP, Roustan C, Benyamin Y. Effect of different enzymatic treatments on the release of titin fragments from rabbit skeletal myofibrils. Biochem J 1993; 293 : 731–4. [Google Scholar]
  31. Astier C, Raynaud F, Lebart MC, et al. Binding of the native titin fragments to actin is regulated by PIP2. FEBS Lett 1998; 429 : 95–8. [Google Scholar]
  32. Runger-Brandle E, Chapponnier C, Gabbiani G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes bloks chromosomes condensation. Nature 1979; 282 : 320–1. [Google Scholar]
  33. Silverman RV, Forer A. Evidence that actin and myosin are involved in the polarward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. J Cell Sci 2000; 113 : 597–609. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.