Free Access
Issue
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 83 - 88
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200521183
Published online 15 January 2005
  1. Steriade M, Timofeev I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 2003; 37 : 563–76. [Google Scholar]
  2. Ebbinghaus H. Uber das Gedachtnis. New York : Dover, 1885. [Google Scholar]
  3. Hintzman DL. Theoretical implications of the spacing effect. In : Solso RL, ed. Theories in cognitive psychology : the Loyola Symposium. Hillsdale : Erlbaum, 1974 : 77–99. [Google Scholar]
  4. Wixted JT. The psychology and neuroscience of forgetting. Annu Rev Psychol 2004; 55 : 235–69. [Google Scholar]
  5. Altmann EM, Gray WD. Forgetting to remember : the functional relationship of decay and interference. Psychol Sci 2002; 13 : 27–33. [Google Scholar]
  6. Anderson MC, Green C. Suppressing unwanted memories by executive control. Nature 2001; 410 : 319–20. [Google Scholar]
  7. Anderson MC, Ochsner KN, Kuhl B, et al. Neural systems underlying the suppression of unwanted memories. Science 2004; 303 : 232–5. [Google Scholar]
  8. Finkenauer C, Luminet O, Gisle L, et al. Flashbulb memories and the underlying mechanisms of their formation : toward an emotional-integrative model. Mem Cognit 1998; 26 : 516–31. [Google Scholar]
  9. Nader K, Schafe GE, LeDoux JE. The labile nature of consolidation theory. Nat Rev Neurosci 2000; 1 : 216–9. [Google Scholar]
  10. Wang JH, Ko GY, Kelly PT. Cellular and molecular bases of memory : synaptic and neuronal plasticity. J Clin Neurophysiol 1997; 14 : 264–93. [Google Scholar]
  11. Tokuda M, Hatase O. Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol 1998; 17 : 137–56. [Google Scholar]
  12. Lisman JE, McIntyre CC. Synaptic plasticity : a molecular memory switch. Curr Biol 2001; 11 : R788–91. [Google Scholar]
  13. Weeber EJ, Sweatt JD. Molecular neurobiology of human cognition. Neuron 2002; 33 : 845–8. [Google Scholar]
  14. Izquierdo LA, Barros DM, Vianna MR, et al. Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 2002; 22 : 269–87. [Google Scholar]
  15. Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001; 11 : 180–7. [Google Scholar]
  16. Wallenstein GV, Vago DR, Walberer AM. Time-dependent involvement of PKA/PKC in contextual memory consolidation. Behav Brain Res 2002; 133 : 159–64. [Google Scholar]
  17. Kelly A, Laroche S, Davis S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 2003; 23 : 5354–60. [Google Scholar]
  18. Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001; 11 : 180–7. [Google Scholar]
  19. Wu GY, Deisseroth K, Tsien RW. Activity-dependent CREB phosphorylation : convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 2001; 98 : 2808–13. [Google Scholar]
  20. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002; 3 : 175–90. [Google Scholar]
  21. Shobe J. The role of PKA, CaMKII, and PKC in avoidance conditioning : permissive or instructive ? Neurobiol Learn Memory 2001; 77 : 291–312. [Google Scholar]
  22. Selcher JC, Weeber EJ, Varga AW, et al. Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 2002; 8 : 122–31. [Google Scholar]
  23. Malleret G, Haditsch U, Genoux D, et al. Reversible enhancement of learning, memory and long-term potentiation by genetic inhibition of the protein phosphatase calcineurin. Cell 2001; 104 : 675–86. [Google Scholar]
  24. Genoux D, Haditsch U, Knobloch M, et al. The protein phosphatase 1 is a molecular constraint on learning and memory. Nature 2002; 418 : 970–5. [Google Scholar]
  25. Mansuy IM, Mayford M, Jacob B, et al. Restricted and regulated overexpression reveals calcineurin as a key component of the transition from short-term to long-term memory. Cell 1998; 92 : 39–49. [Google Scholar]
  26. Mansuy IM, Winder DG, Moallem TM, et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 1998; 21 : 257–65. [Google Scholar]
  27. Foster TC, Sharrow KM, Masse JR, et al. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 2001; 21 : 4066–73. [Google Scholar]
  28. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci 1998; 21 : 127–48. [Google Scholar]
  29. Otten LJ, Rugg MD. When more means less : neural activity related to unsucessful memory encoding. Curr Biol 2001; 11 : 1528–30. [Google Scholar]
  30. Cameron KA, Yashar S, Wilson CL, Fried I. Human hippocampal neurons predict how well word pairs are later remembered. Neuron 2001; 30 : 289–98. [Google Scholar]
  31. Wagner A, Davachi L. Forgetting of things past. Curr Biol 2001; 11 : R964–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.