Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 1, Janvier 2005
Page(s) 83 - 88
Section M/S Revues
Publié en ligne 15 janvier 2005
  1. Steriade M, Timofeev I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 2003; 37 : 563–76. [Google Scholar]
  2. Ebbinghaus H. Uber das Gedachtnis. New York : Dover, 1885. [Google Scholar]
  3. Hintzman DL. Theoretical implications of the spacing effect. In : Solso RL, ed. Theories in cognitive psychology : the Loyola Symposium. Hillsdale : Erlbaum, 1974 : 77–99. [Google Scholar]
  4. Wixted JT. The psychology and neuroscience of forgetting. Annu Rev Psychol 2004; 55 : 235–69. [Google Scholar]
  5. Altmann EM, Gray WD. Forgetting to remember : the functional relationship of decay and interference. Psychol Sci 2002; 13 : 27–33. [Google Scholar]
  6. Anderson MC, Green C. Suppressing unwanted memories by executive control. Nature 2001; 410 : 319–20. [Google Scholar]
  7. Anderson MC, Ochsner KN, Kuhl B, et al. Neural systems underlying the suppression of unwanted memories. Science 2004; 303 : 232–5. [Google Scholar]
  8. Finkenauer C, Luminet O, Gisle L, et al. Flashbulb memories and the underlying mechanisms of their formation : toward an emotional-integrative model. Mem Cognit 1998; 26 : 516–31. [Google Scholar]
  9. Nader K, Schafe GE, LeDoux JE. The labile nature of consolidation theory. Nat Rev Neurosci 2000; 1 : 216–9. [Google Scholar]
  10. Wang JH, Ko GY, Kelly PT. Cellular and molecular bases of memory : synaptic and neuronal plasticity. J Clin Neurophysiol 1997; 14 : 264–93. [Google Scholar]
  11. Tokuda M, Hatase O. Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol 1998; 17 : 137–56. [Google Scholar]
  12. Lisman JE, McIntyre CC. Synaptic plasticity : a molecular memory switch. Curr Biol 2001; 11 : R788–91. [Google Scholar]
  13. Weeber EJ, Sweatt JD. Molecular neurobiology of human cognition. Neuron 2002; 33 : 845–8. [Google Scholar]
  14. Izquierdo LA, Barros DM, Vianna MR, et al. Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 2002; 22 : 269–87. [Google Scholar]
  15. Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001; 11 : 180–7. [Google Scholar]
  16. Wallenstein GV, Vago DR, Walberer AM. Time-dependent involvement of PKA/PKC in contextual memory consolidation. Behav Brain Res 2002; 133 : 159–64. [Google Scholar]
  17. Kelly A, Laroche S, Davis S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 2003; 23 : 5354–60. [Google Scholar]
  18. Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001; 11 : 180–7. [Google Scholar]
  19. Wu GY, Deisseroth K, Tsien RW. Activity-dependent CREB phosphorylation : convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 2001; 98 : 2808–13. [Google Scholar]
  20. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002; 3 : 175–90. [Google Scholar]
  21. Shobe J. The role of PKA, CaMKII, and PKC in avoidance conditioning : permissive or instructive ? Neurobiol Learn Memory 2001; 77 : 291–312. [Google Scholar]
  22. Selcher JC, Weeber EJ, Varga AW, et al. Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 2002; 8 : 122–31. [Google Scholar]
  23. Malleret G, Haditsch U, Genoux D, et al. Reversible enhancement of learning, memory and long-term potentiation by genetic inhibition of the protein phosphatase calcineurin. Cell 2001; 104 : 675–86. [Google Scholar]
  24. Genoux D, Haditsch U, Knobloch M, et al. The protein phosphatase 1 is a molecular constraint on learning and memory. Nature 2002; 418 : 970–5. [Google Scholar]
  25. Mansuy IM, Mayford M, Jacob B, et al. Restricted and regulated overexpression reveals calcineurin as a key component of the transition from short-term to long-term memory. Cell 1998; 92 : 39–49. [Google Scholar]
  26. Mansuy IM, Winder DG, Moallem TM, et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 1998; 21 : 257–65. [Google Scholar]
  27. Foster TC, Sharrow KM, Masse JR, et al. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 2001; 21 : 4066–73. [Google Scholar]
  28. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci 1998; 21 : 127–48. [Google Scholar]
  29. Otten LJ, Rugg MD. When more means less : neural activity related to unsucessful memory encoding. Curr Biol 2001; 11 : 1528–30. [Google Scholar]
  30. Cameron KA, Yashar S, Wilson CL, Fried I. Human hippocampal neurons predict how well word pairs are later remembered. Neuron 2001; 30 : 289–98. [Google Scholar]
  31. Wagner A, Davachi L. Forgetting of things past. Curr Biol 2001; 11 : R964–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.