Free Access
Issue
Med Sci (Paris)
Volume 20, Number 11, Novembre 2004
Page(s) 1020 - 1025
Section M/S revues
DOI https://doi.org/10.1051/medsci/200420111020
Published online 15 November 2004
  1. Méresse S, Bauer U, Ludwig T, Schmidt A, Hoflack B. Bases moléculaires du transport vers les lysosomes. Med Sci (Paris) 1993; 9 : 148–56. [Google Scholar]
  2. Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta 1995; 1241 : 177–94. [Google Scholar]
  3. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992; 61 : 307–30. [Google Scholar]
  4. Diaz E, Pfeffer SR. TIP47 : a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 1998; 93 : 433–43. [Google Scholar]
  5. Bohn H, Kraus W, Winckler W. Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodev Biol Med 1983; 4 : 343–50. [Google Scholar]
  6. Than NG, Sumegi B, Than GN, et al. Cloning and sequence analysis of cDNAs encoding human placental tissue protein 17 (PP17) variants. Eur J Biochem 1998; 258 : 752–7. [Google Scholar]
  7. Than NG, Sumegi B, Bellyei S, et al. Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur J Biochem 2003; 270 : 1176–88. [Google Scholar]
  8. Schweizer A, Kornfeld S, Rohrer, J. Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc Natl Acad Sci USA 1997; 94 : 14471–6. [Google Scholar]
  9. Nair P, Schaub BE, Rohrer J. Characterization of the endosomal sorting signal of the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2003; 278 : 24753–8. [Google Scholar]
  10. Blot G, Janvier K, Le Panse S, et al. Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for Env incorporation into virions and infectivity. J Virol 2003; 77 : 6931–45. [Google Scholar]
  11. Orsel JG, Sincock PM, Krise JP, Pfeffer SR. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc Natl Acad Sci USA 2000; 97 : 9047–51. [Google Scholar]
  12. Lombardi D, Soldati T, Riederer MA, et al. Rab9 functions in transport between late endosomes and the trans-Golgi network. EMBO J 1993; 12 : 677–82. [Google Scholar]
  13. Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156 : 511–8. [Google Scholar]
  14. Carroll KS, Hanna J, Simon I, et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 2001; 292 : 1373–6. [Google Scholar]
  15. Hanna J, Carroll K, Pfeffer SR. Identification of residues in TIP47 essential for Rab9 binding. Proc Natl Acad Sci USA 2002; 99 : 7450–4. [Google Scholar]
  16. Wolins NE, Rubin B, Brasaemle DL. TIP47 associates with lipid droplets. J Biol Chem 2001; 276 : 5101–8. [Google Scholar]
  17. Barbero P, Buell E, Zulley S, Pfeffer SR. TIP47 is not a component of lipid droplets. J Biol Chem 2001; 276 : 24348–51. [Google Scholar]
  18. Miura S, Gan JW, Brzostowski J, et al. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002; 277 : 32253–7. [Google Scholar]
  19. Ohashi M, Mizushima N, Kabeya Y, Yoshimori T. Localization of mammalian NAD(P)H steroid dehydrogenase-like protein on lipid droplets. J Biol Chem 2003; 278 : 36819–29. [Google Scholar]
  20. Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci 1999; 24 : 109–15. [Google Scholar]
  21. Lu X, Gruia-Gray J, Copeland NG, et al. The murine perilipin gene : the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001; 12 : 741–9. [Google Scholar]
  22. Wolins NE, Skinner JR, Schoenfish MJ, et al. Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 2003; 278 : 37713–21. [Google Scholar]
  23. McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003; 44 : 668–73. [Google Scholar]
  24. Kraemer J, Schmitz F, Drenckhahn D. Cytoplasmic dynein and dynactin as likely candidates for microtubule-dependent apical targeting of pancreatic zymogen granules. Eur J Cell Biol 1999; 78 : 265–77. [Google Scholar]
  25. Wu CC, Howell KE, Neville MC, et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000; 21 : 3470–82. [Google Scholar]
  26. Franke WW, Hergt M, Grund C. Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 1987; 49 : 131–41. [Google Scholar]
  27. Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 2002; 157 : 795–806. [Google Scholar]
  28. McGookey DJ, Anderson RG. Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 1983; 97 : 1156–68. [Google Scholar]
  29. Knudson CM, Stemberger BH, Patton S. Effects of colchicine on ultrastructure of the lactating mammary cell: membrane involvement and stress on the Golgi apparatus. Cell Tissue Res 1978; 195 : 169–81. [Google Scholar]
  30. Daudet F, Augeron C, Ollivier-Bousquet M. Early action of colchicine, ammonium chloride and prolactin, on secretion of milk lipids in the lactating mammary gland. Eur J Cell Biol 1981; 24 : 197–202. [Google Scholar]
  31. Fong TH, Wu CH, Liao, et al. Association of globular beta-actin with intracellular lipid droplets in rat adrenocortical cells and adipocytes. Biochem Biophys Res Commun 2001; 289 : 1168–74. [Google Scholar]
  32. Brunetti CR, Burke RL, Kornfeld S, et al. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 1994; 269 : 17067–74. [Google Scholar]
  33. Mellick AS, Day CJ, Weinstein SR, et al. Differential gene expression in breast cancer cell lines and stroma- tumor differences in microdissected breast cancer biopsies revealed by display array analysis. Int J Cancer 2002; 100 : 172–80. [Google Scholar]
  34. Stoll BA. Upper abdominal obesity, insulin resistance and breast cancer risk. Int J Obes Relat Metab Disord 2002; 26 : 747–53. [Google Scholar]
  35. McDonald RG, Pfeffer SR, Coussens L, et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science 1988; 239 : 1134–7. [Google Scholar]
  36. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999; 24 : 8–11. [Google Scholar]
  37. Barlowe C. Traffic COPs of the early secretory pathway. Traffic 2000; 1 : 371–7. [Google Scholar]
  38. Pfeffer SR. Membrane transport: retromer to the rescue. Curr Biol 2001; 11 : R109–11. [Google Scholar]
  39. Sincock PM, Ganley IG, Krise JP, et al. Self-assembly is important for TIP47 function in mannose 6-phosphate receptor transport. Traffic 2003; 4 : 18–25. [Google Scholar]
  40. Thompson JD, Higgins DG, Gibson TJ. ClustalW improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22 : 4673–80. [Google Scholar]
  41. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998; 3 : 259–73. [Google Scholar]
  42. Lacey ML, Haimo LT. Cytoplasmic dynein binds to phospholipid vesicles. Cell Motil Cytoskeleton 1994; 28 : 205–12. [Google Scholar]
  43. Ghosal D, Ankrapp D, Keenan TW. Low molecular mass GTP-binding proteins are secreted from mammary epithelial cells in association with lipid globules. Biochim Biophys Acta 1993; 1168 : 299–306. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.