Free Access
Issue
Med Sci (Paris)
Volume 20, Number 8-9, Août-Septembre 2004
Page(s) 815 - 819
Section Perspective/Horizons
DOI https://doi.org/10.1051/medsci/2004208-9815
Published online 15 August 2004
  1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806–11. [Google Scholar]
  2. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409 : 363–6. [Google Scholar]
  3. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404 : 293–6. [Google Scholar]
  4. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004; 117 : 69–81. [Google Scholar]
  5. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16 : 2497–508. [Google Scholar]
  6. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2000; 2 : 70–5. [Google Scholar]
  7. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411 : 494–8. [Google Scholar]
  8. Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001; 114 : 4557–65. [Google Scholar]
  9. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296 : 550–3. [Google Scholar]
  10. Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20 : 505–8. [Google Scholar]
  11. Brummelkamp T, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2 : 243–7. [Google Scholar]
  12. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33 : 401–6. [Google Scholar]
  13. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature 2002; 418 : 38–9. [Google Scholar]
  14. Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002; 532 : 227–30. [Google Scholar]
  15. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22 : 326–30. [Google Scholar]
  16. Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115 : 199–208. [Google Scholar]
  17. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115 : 209–16. [Google Scholar]
  18. Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003; 31 : 589–95. [Google Scholar]
  19. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003; 278 : 44312–9. [Google Scholar]
  20. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21 : 635–7. [Google Scholar]
  21. Anonymous. Whither RNAi ? Nat Cell Biol 2003; 5 : 489–90. [Google Scholar]
  22. Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5 : 834–9. [Google Scholar]
  23. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10 : 12–8. [Google Scholar]
  24. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003; 33 : 396–400. [Google Scholar]
  25. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003; 301 : 1545–7. [Google Scholar]
  26. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421 : 231–7. [Google Scholar]
  27. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004; 428 : 431–7. [Google Scholar]
  28. Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 2004; 428 : 427–31. [Google Scholar]
  29. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424 : 797–801. [Google Scholar]
  30. Vaucheret H, Beclin C, Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci 2001; 114 : 3083–91. [Google Scholar]
  31. Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999; 99 : 123–32. [Google Scholar]
  32. Bartel DP. MicroRNAs : Genomics, biogenesis, mechanism, and function. Cell 2004; 116 : 281–97. [Google Scholar]
  33. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003; 115 : 787–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.