Free Access
Med Sci (Paris)
Volume 20, Number 8-9, Août-Septembre 2004
Page(s) 767 - 772
Section M/S revues
Published online 15 August 2004
  1. Dorer DR, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 1994; 77 : 993–1002. [Google Scholar]
  2. Orlando V. Polycomb, epigenomes, and control of cell identity. Cell 2003; 112 : 599–606. [Google Scholar]
  3. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403 : 41–5. [Google Scholar]
  4. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila : gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 1997; 90 : 479–90. [Google Scholar]
  5. Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 1985; 5 : 3484–96. [Google Scholar]
  6. Kelly WG, Schaner CE, Dernburg AF, et al. X-chromosome silencing in the germline of C. elegans. Development 2002; 129 : 479–92. [Google Scholar]
  7. Couteau F, Guerry F, Muller F, Palladino F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep 2002; 3 : 235–41. [Google Scholar]
  8. Kelly WG, Fire A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 1998; 125 : 2451–6. [Google Scholar]
  9. Emmons SW, Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 1984; 36 : 599–605. [Google Scholar]
  10. Emmons SW, Roberts S, Ruan KS. Evidence in a nematode for regulation of transposon excision by tissue-specific factors. Mol Gen Genet 1986; 202 : 410–5. [Google Scholar]
  11. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999; 99 : 133–41. [Google Scholar]
  12. Ketting RF, Plasterk RH. A genetic link between co-suppression and RNA interference in C. elegans. Nature 2000; 404 : 296–8. [Google Scholar]
  13. Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 2000; 14 : 1578–83. [Google Scholar]
  14. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806–11. [Google Scholar]
  15. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 1998; 95 : 15502–7. [Google Scholar]
  16. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001; 107 : 465–76. [Google Scholar]
  17. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15 : 2654–9. [Google Scholar]
  18. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106 : 23–34. [Google Scholar]
  19. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in C. elegans. Science 2001; 2 : 2. [Google Scholar]
  20. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409 : 363–6. [Google Scholar]
  21. Sijen T, Plasterk RH. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003; 426 : 310–4. [Google Scholar]
  22. Schmidt A, Palumbo J, Bozetti MP, et al. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 1999; 151 : 749–60. [Google Scholar]
  23. Aravin AA, Naumova NM, Tulin AV, et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 2001; 11 : 1017–27. [Google Scholar]
  24. Tomari Y, Du T, Haley B, et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 2004; 116 : 831–41. [Google Scholar]
  25. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15 : 188–200. [Google Scholar]
  26. Plasterk RH. RNA silencing : The genome’s immune system. Science 2002; 296 : 1263–5. [Google Scholar]
  27. Ambros V. MicroRNAs : Tiny regulators with great potential. Cell 2001; 107 : 823–6. [Google Scholar]
  28. Lin SY, Johnson SM, Abraham M, et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003; 4 : 639–50. [Google Scholar]
  29. Dudley NR, Labbe JC, Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci USA 2002; 99 : 4191–6. [Google Scholar]
  30. Pal-Bhadra M, Bhadra U, Birchler JA. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 2002; 9 : 315–27. [Google Scholar]
  31. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3 : 737–47. [Google Scholar]
  32. Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002; 12 : 1301–11. [Google Scholar]
  33. Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 418 : 430–4. [Google Scholar]
  34. Caudy AA, Ketting RF, Hammond SH, et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003; 425 : 411–4. [Google Scholar]
  35. Tijsterman M, Ketting RF, Okihara KL, et al. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 2002; 295 : 694–7. [Google Scholar]
  36. Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 2002; 109 : 861–71. [Google Scholar]
  37. Williams RW, Rubin GM. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 2002; 99 : 6889–94. [Google Scholar]
  38. Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001; 293 : 1146–50. [Google Scholar]
  39. Kennerdell JR, Yamaguchi S, Carthew RW. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 2002; 16 : 1884–9. [Google Scholar]
  40. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 1999; 99 : 35–46. [Google Scholar]
  41. Sarot E, Payen-Groschene G, Bucheton A, Pelisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 2004; 166 : 1313–21. [Google Scholar]
  42. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16 : 2497–508. [Google Scholar]
  43. Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 2004; 116 : 817–29. [Google Scholar]
  44. audy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16 : 2491–6. [Google Scholar]
  45. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi : Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101 : 25–33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.