Free Access
Med Sci (Paris)
Volume 20, Number 5, Mai 2004
Page(s) 551 - 556
Published online 15 May 2004
  1. Glagov S. Intimal hyperplasia, vascular remodeling, and restenosis problem. Circulation 1994; 89 : 2888–91. [Google Scholar]
  2. Tronc F, Wassef M, Esposito B, et al. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 1996; 16 : 1256–62. [Google Scholar]
  3. Tronc F, Mallat Z, Lehoux S, et al. Role of matrix metalloproteinases in blood flow-induced arterial enlargement. Arterioscler Thromb Vasc Biol 2000; 20 : E120–6. [Google Scholar]
  4. Jalali S, del Pozo MA, Chen K, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 2001; 98 : 1042–6. [Google Scholar]
  5. Muller JM, Chilian WM, Davis MJ. Integrin signaling transduces shear stress-dependent vasodilation of coronary arterioles. Circ Res 1997; 80 : 320–6. [Google Scholar]
  6. Bhullar IS, Li YS, Miao H, et al. Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 1998; 273 : 30544–9. [Google Scholar]
  7. Hoger JH, Ilyin VI, Forsyth S, Hoger A. Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci USA 2002; 99 : 7780–5. [Google Scholar]
  8. Ohno M, Gibbons GH, Dzau VJ, Cooke JP. Shear stress elevated endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 1993; 88 : 193–7. [Google Scholar]
  9. Gudi SR, Clark CB, Frangos JA. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 1996; 79 : 834–9. [Google Scholar]
  10. Hsieh HJ, Li NQ, Frangos JA. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J Cell Physiol 1993; 154 : 143–51. [Google Scholar]
  11. Hansen CA, Schroering AG, Carey DJ, Robishaw JD. Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Cell Biol 1994; 126 : 811–29. [Google Scholar]
  12. Chen KD, Li YS, Kim M, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 1999; 274 : 18393–400. [Google Scholar]
  13. De Keulenaer GW, Chappell DC, Ishizaka N, et al. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state : role of a superoxide-producing NADH oxidase. Circ Res 1998; 82 : 1094–101. [Google Scholar]
  14. Silacci P, Desgeorges A, Mazzolai L, et al. Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 2001; 38 : 1162–6. [Google Scholar]
  15. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399 : 601–5. [Google Scholar]
  16. Dimmeler S, Assmus B, Hermann C, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells : involvement in suppression of apoptosis. Circ Res 1998; 83 : 334–41. [Google Scholar]
  17. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001; 280 : F193–206. [Google Scholar]
  18. Mallat Z, Tedgui A. Apoptosis in the vasculature : Mechanisms and functional importance. Br J Pharmacol 2000; 130 : 947–62. [Google Scholar]
  19. Ishida T, Peterson TE, Kovach NL, Berk BC. MAP kinase activation by flow in endothelial cells : role of beta 1 integrins and tyrosine kinases. Circ Res 1996; 79 : 310–6. [Google Scholar]
  20. Carbajal JM, Schaeffer RC, Jr. RhoA inactivation enhances endothelial barrier function. Am J Physiol 1999; 277 : C955–64. [Google Scholar]
  21. Li S, Chen BP, Azuma N, et al. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 1999; 103 : 1141–50. [Google Scholar]
  22. Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998; 32 : 338–45. [Google Scholar]
  23. Li S, Kim M, Hu YL, et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 1997; 272 : 30455–62. [Google Scholar]
  24. Barberis L, Wary KK, Fiucci G, et al. Distinct roles of the adaptor protein Shc and focal adhesion kinase in integrin signaling to ERK. J Biol Chem 2000; 275 : 36532–40. [Google Scholar]
  25. Jo H, Sipos K, Go YM, et al. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem 1997; 272 : 1395–401. [Google Scholar]
  26. Abe J, Okuda M, Huang Q, et al. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 2000; 275 : 1739–48. [Google Scholar]
  27. Resnick N, Collins T, Atkinson W, et al. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive-element. Proc Natl Acad Sci USA 1993; 90 : 4591–5. [Google Scholar]
  28. McCormick SM, Eskin SG, McIntire LV, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2001; 98 : 8955–60. [Google Scholar]
  29. Bongrazio M, Baumann C, Zakrzewicz A, et al. Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress. Cardiovasc Res 2000; 47 : 384–93. [Google Scholar]
  30. Chen BP, Li YS, Zhao Y, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 2001; 7 : 55–63. [Google Scholar]
  31. Garcia-Cardena G, Comander J, Anderson KR, et al. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001; 98 : 4478–85. [Google Scholar]
  32. Adams LD, Geary RL, McManus B, Schwartz SM. A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000; 87 : 623–31. [Google Scholar]
  33. Tulis DA, Prewitt RL. Medial and endothelial platelet-derived growth factor A chain expression is regulated by in vivo exposure to elevated flow. J Vasc Res 1998; 35 : 413–20. [Google Scholar]
  34. Negishi M, Lu D, Zhang YQ, et al. Upregulatory expression of furin and transforming growth factor-beta by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21 : 785–90. [Google Scholar]
  35. Gan L, Doroudi R, Hagg U, et al. Differential immediate-early gene responses to shear stress and intraluminal pressure in intact human conduit vessels. FEBS Lett 2000; 477 : 89–94. [Google Scholar]
  36. Doroudi R, Gan LM, Selin Sjogren L, Jern S. Effects of shear stress on eicosanoid gene expression and metabolite production in vascular endothelium as studied in a novel biomechanical perfusion model. Biochem Biophys Res Commun 2000; 269 : 257–64. [Google Scholar]
  37. Gan L, Miocic M, Doroudi R, et al. Distinct regulation of vascular endothelial growth factor in intact human conduit vessels exposed to laminar fluid shear stress and pressure. Biochem Biophys Res Commun 2000; 272 : 490–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.