Free Access
Med Sci (Paris)
Volume 20, Number 5, Mai 2004
Page(s) 544 - 549
Section M/S revues
Published online 15 May 2004
  1. Hille B. Ionic channels in excitable membranes. Sunderland : Sinauer Associates Inc, 1992 : 608 p. [Google Scholar]
  2. Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci 1999; 868 : 233–85. [Google Scholar]
  3. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J Physiol 1997; 505 : 267–82. [Google Scholar]
  4. Yamada M, Inanobe A, Kurachi Y. G protein regulation of potassium ion channels. Pharmacol Rev 1998; 50 : 723–60. [Google Scholar]
  5. Lesage F, Guillemare E, Fink M, et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 1996; 15 : 1004–11. [Google Scholar]
  6. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000; 279 : F793–801. [Google Scholar]
  7. Patel AJ, Honore E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001; 24 : 339–46. [Google Scholar]
  8. Lesage F, Reyes R, Fink M, et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. Embo J 1996; 15 : 6400–7. [Google Scholar]
  9. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology 2003; 44 : 1–7. [Google Scholar]
  10. Talley EM, Solorzano G, Lei Q, et al. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 2001; 21 : 7491–505. [Google Scholar]
  11. Girard C, Tinel N, Terrenoire C, et al. p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. Embo J 2002; 21 : 4439–48. [Google Scholar]
  12. Rajan S, Preisig-Muller R, Wischmeyer E, et al. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 2002; 545 : 13–26. [Google Scholar]
  13. Maingret F, Patel AJ, Lazdunski M, Honore E. The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. Embo J 2001; 20 : 47–54. [Google Scholar]
  14. Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. Embo J 1997; 16 : 5464–71. [Google Scholar]
  15. Rajan S, Wischmeyer E, Xin Liu G, et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 2000; 275 : 16650–7. [Google Scholar]
  16. Lesage F, Terrenoire C, Romey G, Lazdunski M. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000; 275 : 28398–405. [Google Scholar]
  17. Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 2000; 25 : 399–410 [Google Scholar]
  18. Millar JA, Barratt L, Southan AP, et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci USA 2000; 97 : 3614–8 [Google Scholar]
  19. Brickley SG, Revilla V, Cull-Candy SG, et al. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 2001; 409 : 88–92. [Google Scholar]
  20. Han J, Truell J, Gnatenco C, Kim D. Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 2002; 542 : 431–44. [Google Scholar]
  21. Lauritzen I, Blondeau N, Heurteaux C, et al. Polyunsaturated fatty acids are potent neuroprotectors. Embo J 2000; 19 : 1784–93. [Google Scholar]
  22. Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK-1 is a highly modulated pH-sensitive ’leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 2001; 129 : 159–74. [Google Scholar]
  23. Buckler KJ, Williams BA, Honore E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 2000; 525 : 135–42. [Google Scholar]
  24. Maingret F, Lauritzen I, Patel AJ, et al. TREK-1 is a heat-activated background K+ channel. Embo J 2000; 19 : 2483–91. [Google Scholar]
  25. Patel AJ, Honore E, Lesage F, et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 1999; 2 : 422–6. [Google Scholar]
  26. Washburn CP, Sirois JE, Talley EM, et al. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 2002; 22 : 1256–65. [Google Scholar]
  27. Sirois JE, Lynch IC, Bayliss DA. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 2002; 541 : 717–29. [Google Scholar]
  28. Blondeau N, Lauritzen I, Widmann C, et al. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002; 22 : 821–34. [Google Scholar]
  29. Gnatenco C, Han J, Snyder AK, Kim D. Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res 2002; 931 : 56–67. [Google Scholar]
  30. Duprat F, Lesage F, Patel AJ, et al. The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 2000; 57 : 906–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.