Accès gratuit
Numéro
Med Sci (Paris)
Volume 20, Numéro 5, Mai 2004
Page(s) 544 - 549
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004205544
Publié en ligne 15 mai 2004
  1. Hille B. Ionic channels in excitable membranes. Sunderland : Sinauer Associates Inc, 1992 : 608 p. [Google Scholar]
  2. Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci 1999; 868 : 233–85. [Google Scholar]
  3. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J Physiol 1997; 505 : 267–82. [Google Scholar]
  4. Yamada M, Inanobe A, Kurachi Y. G protein regulation of potassium ion channels. Pharmacol Rev 1998; 50 : 723–60. [Google Scholar]
  5. Lesage F, Guillemare E, Fink M, et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 1996; 15 : 1004–11. [Google Scholar]
  6. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000; 279 : F793–801. [Google Scholar]
  7. Patel AJ, Honore E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001; 24 : 339–46. [Google Scholar]
  8. Lesage F, Reyes R, Fink M, et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. Embo J 1996; 15 : 6400–7. [Google Scholar]
  9. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology 2003; 44 : 1–7. [Google Scholar]
  10. Talley EM, Solorzano G, Lei Q, et al. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 2001; 21 : 7491–505. [Google Scholar]
  11. Girard C, Tinel N, Terrenoire C, et al. p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. Embo J 2002; 21 : 4439–48. [Google Scholar]
  12. Rajan S, Preisig-Muller R, Wischmeyer E, et al. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 2002; 545 : 13–26. [Google Scholar]
  13. Maingret F, Patel AJ, Lazdunski M, Honore E. The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. Embo J 2001; 20 : 47–54. [Google Scholar]
  14. Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. Embo J 1997; 16 : 5464–71. [Google Scholar]
  15. Rajan S, Wischmeyer E, Xin Liu G, et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 2000; 275 : 16650–7. [Google Scholar]
  16. Lesage F, Terrenoire C, Romey G, Lazdunski M. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000; 275 : 28398–405. [Google Scholar]
  17. Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 2000; 25 : 399–410 [Google Scholar]
  18. Millar JA, Barratt L, Southan AP, et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci USA 2000; 97 : 3614–8 [Google Scholar]
  19. Brickley SG, Revilla V, Cull-Candy SG, et al. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 2001; 409 : 88–92. [Google Scholar]
  20. Han J, Truell J, Gnatenco C, Kim D. Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 2002; 542 : 431–44. [Google Scholar]
  21. Lauritzen I, Blondeau N, Heurteaux C, et al. Polyunsaturated fatty acids are potent neuroprotectors. Embo J 2000; 19 : 1784–93. [Google Scholar]
  22. Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK-1 is a highly modulated pH-sensitive ’leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 2001; 129 : 159–74. [Google Scholar]
  23. Buckler KJ, Williams BA, Honore E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 2000; 525 : 135–42. [Google Scholar]
  24. Maingret F, Lauritzen I, Patel AJ, et al. TREK-1 is a heat-activated background K+ channel. Embo J 2000; 19 : 2483–91. [Google Scholar]
  25. Patel AJ, Honore E, Lesage F, et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 1999; 2 : 422–6. [Google Scholar]
  26. Washburn CP, Sirois JE, Talley EM, et al. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 2002; 22 : 1256–65. [Google Scholar]
  27. Sirois JE, Lynch IC, Bayliss DA. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 2002; 541 : 717–29. [Google Scholar]
  28. Blondeau N, Lauritzen I, Widmann C, et al. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002; 22 : 821–34. [Google Scholar]
  29. Gnatenco C, Han J, Snyder AK, Kim D. Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res 2002; 931 : 56–67. [Google Scholar]
  30. Duprat F, Lesage F, Patel AJ, et al. The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 2000; 57 : 906–12. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.