Free Access
Med Sci (Paris)
Volume 20, Number 5, Mai 2004
Page(s) 526 - 538
Section M/S revues
Published online 15 May 2004
  1. Wilson EB. The cell in development and inheritance. New York : Macmillan, 1896. [Google Scholar]
  2. Child CM. Patterns and problems of development. Chicago, 1941. [Google Scholar]
  3. Sardet C, Prodon, F, Pruliere, G, Chenevert J. Polarisation des œufs et des embryons : principes communs. Med Sci (Paris) 2004; 20 : 414–23. [Google Scholar]
  4. Goldstein B, Freeman G. Axis specification in animal development. BioEssays 1997; 19 : 105–16. [Google Scholar]
  5. Goldstein B, Frisse LM, Thomas WK. Embryonic axis specification in nematodes: Evolution of the first step in development. Curr Biol 1998; 8 : 157–60. [Google Scholar]
  6. Gilbert SF. developmental biology. Sunderland, Massachusetts: Sinauer Associates Inc., 2000 : 749 [Google Scholar]
  7. Wolpert L. Principles of development. New York: Oxford University Press Inc., 2002 : 542 [Google Scholar]
  8. Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila. PARallels and differences. Science 2002; 298 : 1946–50. [Google Scholar]
  9. Wodarz A. Establishing cell polarity in development. Nat Cell Biol 2002; 4 : E39–44. [Google Scholar]
  10. Jaffe LA, Giusti AF, Carroll DJ, Foltz KR. Ca2+ signalling during fertilization of echinoderm eggs. Sem Cell Dev Biol 2001; 12 : 45–51. [Google Scholar]
  11. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 1999; 211 : 157–76. [Google Scholar]
  12. Sardet C, Prodon F, Dumollard R, et al. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241 : 1–23. [Google Scholar]
  13. C, McDougall A, Houliston E. Cytoplasmic domains in egg. Trends Cell Biol 1994; 4 : 166–71. [Google Scholar]
  14. Frick JE, Ruppert EE. Primordial germ cells and oocytes of Branchiostoma virginiae (Cephalochordata, Acrania) are flagellated epithelial cells: Relationship between epithelial and primary egg polarity. Zygote 1997; 5 : 139–51. [Google Scholar]
  15. Wylie C. Germ cells. Curr Opin Genet Dev 2000; 10 : 410–3. [Google Scholar]
  16. Matova N, Cooley L. Comparative aspects of animal oogenesis. Dev Biol 2001; 231 : 291–320. [Google Scholar]
  17. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998; 40 : 1–10. [Google Scholar]
  18. Carre D, Djediat C, Sardet C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 2002; 129 : 661–70. [Google Scholar]
  19. Gard DL. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Microsc Res Tech 1999; 44 : 388–414. [Google Scholar]
  20. Houston DW, King ML. Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 2000; 50 : 155–81. [Google Scholar]
  21. Kloc M, Bilinski S, Chan AP, et al. RNA localization and germ cell determination in Xenopus. Int Rev Cytol 2001; 203 : 63–91. [Google Scholar]
  22. Chang P, Perez-Mongiovi D, Houliston E. Organisation of Xenopus oocyte and egg cortices. Microsc Res Tech 1999; 44 : 415–29. [Google Scholar]
  23. Kloc M, Zearfoss NR, Etkin LD. Mechanisms of subcellular mRNA localization. Cell 2002; 108 : 533–44. [Google Scholar]
  24. Gard DL. Axis formation during amphibian oogenesis : Re-evaluating the role of the cytoskeleton. Curr Top Dev Biol 1995; 30 : 215–52. [Google Scholar]
  25. Terasaki M, Runft LL, Hand AR. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 2001; 12 : 1103–16. [Google Scholar]
  26. Verlhac MH, Lefebvre C, Guillaud P, et al. Asymmetric division in mouse oocytes : With or without Mos. Curr Biol 2000; 10 : 1303–6. [Google Scholar]
  27. Fernandez J, Roegiers F, Cantillana V, Sardet C. Formation and localization of cytoplasmic domains in leech and ascidian zygotes. Int J Dev Biol 1998; 42 : 1075–84. [Google Scholar]
  28. Nishida H. Specification of developmental fates in ascidian embryos: Molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 2002; 217 : 227–76. [Google Scholar]
  29. Sasakura Y, Ogasawara M, Makabe KW. Two pathways of maternal RNA localization at the posterior-vegetal cytoplasm in early ascidian embryo. Dev Biol 2000; 220 : 365–78. [Google Scholar]
  30. Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003; 130 : 5839–49. [Google Scholar]
  31. King ML, Zhou Y, Bubunenko M. Polarizing genetic information in the egg: RNA localization in the frog oocyte. BioEssays 1999; 21 : 546–57. [Google Scholar]
  32. Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Gene Expr Patterns 2002; 2 : 145–50. [Google Scholar]
  33. Choi SC, Kim J, Han JK. Identification and developmental expression of par-6 gene in Xenopus laevis. Mech Dev 2000; 91 : 347–50. [Google Scholar]
  34. Ohno S. Intercellular junctions and cellular polarity: The PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13 : 641–8. [Google Scholar]
  35. Van Eeden F, St Johnston D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Op Gen Dev 1999; 9 : 396–404. [Google Scholar]
  36. Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 2001; 11 : 374–83. [Google Scholar]
  37. Navarro C, Lehmann R, Morris J. Oogenesis: Setting one sister above the rest. Curr Biol 2001; 11 : R162–5. [Google Scholar]
  38. Lopez-Schier H. The polarisation of the anteroposterior axis in Drosophila. Bioessays 2003; 25 : 781–91. [Google Scholar]
  39. Kemphues K. PARsing embryonic polarity. Cell 2000; 101 : 345–8. [Google Scholar]
  40. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001; 35 : 365–406. [Google Scholar]
  41. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 2002; 4 : 592–8. [Google Scholar]
  42. Houchmandzadeh B, Wieschaus E, Leibler S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 2002; 415 : 798–802. [Google Scholar]
  43. Blankenship JT, Wieschaus E. Two new roles for the Drosophila AP patterning system in early morphogenesis. Development 2001; 128 : 5129–38. [Google Scholar]
  44. Anderson KV. Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo. Cell 1998; 95 : 439–42. [Google Scholar]
  45. Dissing M, Giordano H, DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. Embo J 2001; 20 : 2387–93. [Google Scholar]
  46. Stathopoulos A, Van Drenth M, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 2002; 111 : 687–701. [Google Scholar]
  47. Saunders CM, Larman MG, Parrington J, et al. PLC zeta: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 2002; 129 : 3533–44. [Google Scholar]
  48. Suzuki K, Tanaka Y, Nakajima Y, et al. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Biophys J 1995; 68 : 739–48. [Google Scholar]
  49. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1 : 11–21. [Google Scholar]
  50. Roegiers F, McDougall A, Sardet C. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 1995; 121 : 3457–66. [Google Scholar]
  51. Dumollard R, Sardet C. Three different calcium wave pacemakers in ascidian eggs. J Cell Sci 2001; 114 : 2471–81. [Google Scholar]
  52. Roegiers F, Djediat C, Dumollard R, et al. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 1999; 126 : 3101–17. [Google Scholar]
  53. Xanthos JB, Kofron M, Tao Q, et al. The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 2002; 129 : 4027–43. [Google Scholar]
  54. Holland LZ. Body-plan evolution in the bilateria: Early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 2000; 10 : 434–42. [Google Scholar]
  55. Samuel AD, Murthy VN, Hengartner MO. Calcium dynamics during fertilization in C. elegans. BMC Dev Biol 2001; 1 : 8. [Google Scholar]
  56. Golden A. Cytoplasmic flow and the establishment of polarity in C. elegans 1-cell embryos. Curr Opin Genet Dev 2000; 10 : 414–20. [Google Scholar]
  57. Goldstein B. Embryonic polarity: A role for microtubules. Curr Biol 2000; 10 : R820–2. [Google Scholar]
  58. Lyczak R, Gomes JE, Bowerman B. Heads or tails: Cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002; 3 : 157–66. [Google Scholar]
  59. Rappleye CA, Paredez AR, Smith CW, et al. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 1999; 13 : 2838–51. [Google Scholar]
  60. Gonczy P. Mechanisms of spindle positioning: Focus on flies and worms. Trends Cell Biol 2002; 12 : 332–9. [Google Scholar]
  61. Elinson RP, Houliston E. Cytoskeleton in Xenopus oocytes and eggs. Sem Cell Biol 1990; 1 : 349–57. [Google Scholar]
  62. Marrari Y, Terasaki M, Arrowsmith V, Houliston E. Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 2000; 224 : 250–62. [Google Scholar]
  63. Miller JR, Rowning BA, Larabell CA, et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 1999; 146 : 427–37. [Google Scholar]
  64. Larabell CA, Torres M, Rowning BA, et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 1997; 136 : 1123–36. [Google Scholar]
  65. Beckhelling C, Perez-Mongiovi D, Houliston E. Localised MPF regulation in eggs. Biol Cell 2000; 92 : 245–53. [Google Scholar]
  66. Perez-Mongiovi D, Beckhelling C, Chang P, et al. E. Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts. J Cell Biol 2000; 150 : 963–74. [Google Scholar]
  67. Marikawa Y, Elinson RP. Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 1999; 89 : 93–102. [Google Scholar]
  68. Nishida H. Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol 1997; 176 : 245–306. [Google Scholar]
  69. Nishida H, Sawada K. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 2001; 409 : 724–9. [Google Scholar]
  70. Takamura K, Fujimura M, Yamaguchi Y. Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 2002; 212 : 11–8. [Google Scholar]
  71. Seydoux G, Schedl T. The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 2001; 203 : 139–85. [Google Scholar]
  72. Goldstein B. When cells tell their neighbors which direction to divide. Dev Dyn 2000; 218 : 23–9. [Google Scholar]
  73. Labouesse M, Mango SE. Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet 1999; 15 : 307–13. [Google Scholar]
  74. Horstadius S. Experimental embryology of echinoderms. London: Clarendon Press, 1973 [Google Scholar]
  75. Boveri T. Über die polarität des seeigeleies. Ver der Phys Med Ges zu Wuerzburg 1901; 34 : 145–75. [Google Scholar]
  76. Coffman JA, Davidson EH. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 2001; 230 : 18–28. [Google Scholar]
  77. Henry JJ, Raff RA. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 1990; 141 : 55–69. [Google Scholar]
  78. Gross JM, Peterson RE, Wu SY, McClay DR. LvTbx2/3: A T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 2003; 130 : 1989–99. [Google Scholar]
  79. Schroeder TE. Expressions of the prefertilization polar axis in sea urchin eggs. Dev Biol 1980; 79 : 428–43. [Google Scholar]
  80. Sardet C, Chang P. A marker of animal-vegetal polarity in the egg of the sea urchin Paracentrotus lividus. The pigment band. Exp Cell Res 1985; 160 : 73–82. [Google Scholar]
  81. Angerer LM, Angerer RC. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 2000; 218 : 1–2. [Google Scholar]
  82. Brandhorst BP, Klein WH. Molecular patterning along the sea urchin animal-vegetal axis. Int Rev Cytol 2002; 213 : 183–232. [Google Scholar]
  83. Emily-Fenouil F, Ghiglione C, Lhomond G, et al. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 1998; 125 : 2489–98. [Google Scholar]
  84. McClay DR, Peterson RE, Range RC, et al. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 2000; 127 : 5113–22. [Google Scholar]
  85. Sweet HC, Hodor PG, Ettensohn CA. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 1999; 126 : 5255–65. [Google Scholar]
  86. Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell 1999; 96 : 195–209. [Google Scholar]
  87. Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: Axis formation in the mouse embryo. Curr Opin Genet Dev 2001; 11 : 384–92. [Google Scholar]
  88. Zernicka-Goetz M. Patterning of the embryo: The first spatial decisions in the life of a mouse. Development 2002; 129 : 815–29. [Google Scholar]
  89. Weber RJ, Pedersen RA, Wianny F, et al. Polarity of the mouse embryo is anticipated before implantation. Development 1999; 126 : 5591–8. [Google Scholar]
  90. Gardner RL. Polarity in early mammalian development. Curr Opin Genet Dev 1999; 9 : 417–21. [Google Scholar]
  91. Ciemerych MA, Mesnard D, Zernicka-Goetz M. Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are non essential for development. Development 2000; 127 : 3467–74. [Google Scholar]
  92. Piotrowska K, Zernicka-Goetz M. Early patterning of the mouse embryo. Contributions of sperm and egg. Development 2002; 129 : 5803–13. [Google Scholar]
  93. Edwards RG. Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 2001; 3 : 138–60. [Google Scholar]
  94. Piotrowska K, Zernicka-Goetz M. Role for sperm in spatial patterning of the early mouse embryo. Nature 2001; 409 : 517–21. [Google Scholar]
  95. Johnson MH. Mammalian development: Axes in the egg ? Curr Biol 2001; 11 : R281–4. [Google Scholar]
  96. Deguchi R, Shirakawa H, Oda S, et al. Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal-vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev Biol 2000; 218 : 299–313. [Google Scholar]
  97. Ozil JP, Huneau D. Activation of rabbit oocytes: The impact of the Ca2+ signal regime on development. Development 2001; 128 : 917–28. [Google Scholar]
  98. Huxley JS. Problems of relative growth. New York : Dial Press, 1932. [Google Scholar]
  99. Chabry LM. Contribution à l’embryologie normale et tératologique des ascidies simples. J Anat Physiol Norm Pathol 1887; 23 : 167–321. [Google Scholar]
  100. Driesch D. The potency of the first two cleavage cells in echinoderm development : Experimental production of partial and double formation. New York, Hafner, 1974 : 1892. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.