Accès gratuit
Numéro
Med Sci (Paris)
Volume 20, Numéro 5, Mai 2004
Page(s) 526 - 538
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004205526
Publié en ligne 15 mai 2004
  1. Wilson EB. The cell in development and inheritance. New York : Macmillan, 1896. [Google Scholar]
  2. Child CM. Patterns and problems of development. Chicago, 1941. [Google Scholar]
  3. Sardet C, Prodon, F, Pruliere, G, Chenevert J. Polarisation des œufs et des embryons : principes communs. Med Sci (Paris) 2004; 20 : 414–23. [Google Scholar]
  4. Goldstein B, Freeman G. Axis specification in animal development. BioEssays 1997; 19 : 105–16. [Google Scholar]
  5. Goldstein B, Frisse LM, Thomas WK. Embryonic axis specification in nematodes: Evolution of the first step in development. Curr Biol 1998; 8 : 157–60. [Google Scholar]
  6. Gilbert SF. developmental biology. Sunderland, Massachusetts: Sinauer Associates Inc., 2000 : 749 [Google Scholar]
  7. Wolpert L. Principles of development. New York: Oxford University Press Inc., 2002 : 542 [Google Scholar]
  8. Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila. PARallels and differences. Science 2002; 298 : 1946–50. [Google Scholar]
  9. Wodarz A. Establishing cell polarity in development. Nat Cell Biol 2002; 4 : E39–44. [Google Scholar]
  10. Jaffe LA, Giusti AF, Carroll DJ, Foltz KR. Ca2+ signalling during fertilization of echinoderm eggs. Sem Cell Dev Biol 2001; 12 : 45–51. [Google Scholar]
  11. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 1999; 211 : 157–76. [Google Scholar]
  12. Sardet C, Prodon F, Dumollard R, et al. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241 : 1–23. [Google Scholar]
  13. C, McDougall A, Houliston E. Cytoplasmic domains in egg. Trends Cell Biol 1994; 4 : 166–71. [Google Scholar]
  14. Frick JE, Ruppert EE. Primordial germ cells and oocytes of Branchiostoma virginiae (Cephalochordata, Acrania) are flagellated epithelial cells: Relationship between epithelial and primary egg polarity. Zygote 1997; 5 : 139–51. [Google Scholar]
  15. Wylie C. Germ cells. Curr Opin Genet Dev 2000; 10 : 410–3. [Google Scholar]
  16. Matova N, Cooley L. Comparative aspects of animal oogenesis. Dev Biol 2001; 231 : 291–320. [Google Scholar]
  17. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998; 40 : 1–10. [Google Scholar]
  18. Carre D, Djediat C, Sardet C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 2002; 129 : 661–70. [Google Scholar]
  19. Gard DL. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Microsc Res Tech 1999; 44 : 388–414. [Google Scholar]
  20. Houston DW, King ML. Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 2000; 50 : 155–81. [Google Scholar]
  21. Kloc M, Bilinski S, Chan AP, et al. RNA localization and germ cell determination in Xenopus. Int Rev Cytol 2001; 203 : 63–91. [Google Scholar]
  22. Chang P, Perez-Mongiovi D, Houliston E. Organisation of Xenopus oocyte and egg cortices. Microsc Res Tech 1999; 44 : 415–29. [Google Scholar]
  23. Kloc M, Zearfoss NR, Etkin LD. Mechanisms of subcellular mRNA localization. Cell 2002; 108 : 533–44. [Google Scholar]
  24. Gard DL. Axis formation during amphibian oogenesis : Re-evaluating the role of the cytoskeleton. Curr Top Dev Biol 1995; 30 : 215–52. [Google Scholar]
  25. Terasaki M, Runft LL, Hand AR. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 2001; 12 : 1103–16. [Google Scholar]
  26. Verlhac MH, Lefebvre C, Guillaud P, et al. Asymmetric division in mouse oocytes : With or without Mos. Curr Biol 2000; 10 : 1303–6. [Google Scholar]
  27. Fernandez J, Roegiers F, Cantillana V, Sardet C. Formation and localization of cytoplasmic domains in leech and ascidian zygotes. Int J Dev Biol 1998; 42 : 1075–84. [Google Scholar]
  28. Nishida H. Specification of developmental fates in ascidian embryos: Molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 2002; 217 : 227–76. [Google Scholar]
  29. Sasakura Y, Ogasawara M, Makabe KW. Two pathways of maternal RNA localization at the posterior-vegetal cytoplasm in early ascidian embryo. Dev Biol 2000; 220 : 365–78. [Google Scholar]
  30. Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003; 130 : 5839–49. [Google Scholar]
  31. King ML, Zhou Y, Bubunenko M. Polarizing genetic information in the egg: RNA localization in the frog oocyte. BioEssays 1999; 21 : 546–57. [Google Scholar]
  32. Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Gene Expr Patterns 2002; 2 : 145–50. [Google Scholar]
  33. Choi SC, Kim J, Han JK. Identification and developmental expression of par-6 gene in Xenopus laevis. Mech Dev 2000; 91 : 347–50. [Google Scholar]
  34. Ohno S. Intercellular junctions and cellular polarity: The PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13 : 641–8. [Google Scholar]
  35. Van Eeden F, St Johnston D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Op Gen Dev 1999; 9 : 396–404. [Google Scholar]
  36. Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 2001; 11 : 374–83. [Google Scholar]
  37. Navarro C, Lehmann R, Morris J. Oogenesis: Setting one sister above the rest. Curr Biol 2001; 11 : R162–5. [Google Scholar]
  38. Lopez-Schier H. The polarisation of the anteroposterior axis in Drosophila. Bioessays 2003; 25 : 781–91. [Google Scholar]
  39. Kemphues K. PARsing embryonic polarity. Cell 2000; 101 : 345–8. [Google Scholar]
  40. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001; 35 : 365–406. [Google Scholar]
  41. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 2002; 4 : 592–8. [Google Scholar]
  42. Houchmandzadeh B, Wieschaus E, Leibler S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 2002; 415 : 798–802. [Google Scholar]
  43. Blankenship JT, Wieschaus E. Two new roles for the Drosophila AP patterning system in early morphogenesis. Development 2001; 128 : 5129–38. [Google Scholar]
  44. Anderson KV. Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo. Cell 1998; 95 : 439–42. [Google Scholar]
  45. Dissing M, Giordano H, DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. Embo J 2001; 20 : 2387–93. [Google Scholar]
  46. Stathopoulos A, Van Drenth M, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 2002; 111 : 687–701. [Google Scholar]
  47. Saunders CM, Larman MG, Parrington J, et al. PLC zeta: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 2002; 129 : 3533–44. [Google Scholar]
  48. Suzuki K, Tanaka Y, Nakajima Y, et al. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Biophys J 1995; 68 : 739–48. [Google Scholar]
  49. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1 : 11–21. [Google Scholar]
  50. Roegiers F, McDougall A, Sardet C. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 1995; 121 : 3457–66. [Google Scholar]
  51. Dumollard R, Sardet C. Three different calcium wave pacemakers in ascidian eggs. J Cell Sci 2001; 114 : 2471–81. [Google Scholar]
  52. Roegiers F, Djediat C, Dumollard R, et al. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 1999; 126 : 3101–17. [Google Scholar]
  53. Xanthos JB, Kofron M, Tao Q, et al. The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 2002; 129 : 4027–43. [Google Scholar]
  54. Holland LZ. Body-plan evolution in the bilateria: Early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 2000; 10 : 434–42. [Google Scholar]
  55. Samuel AD, Murthy VN, Hengartner MO. Calcium dynamics during fertilization in C. elegans. BMC Dev Biol 2001; 1 : 8. [Google Scholar]
  56. Golden A. Cytoplasmic flow and the establishment of polarity in C. elegans 1-cell embryos. Curr Opin Genet Dev 2000; 10 : 414–20. [Google Scholar]
  57. Goldstein B. Embryonic polarity: A role for microtubules. Curr Biol 2000; 10 : R820–2. [Google Scholar]
  58. Lyczak R, Gomes JE, Bowerman B. Heads or tails: Cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002; 3 : 157–66. [Google Scholar]
  59. Rappleye CA, Paredez AR, Smith CW, et al. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 1999; 13 : 2838–51. [Google Scholar]
  60. Gonczy P. Mechanisms of spindle positioning: Focus on flies and worms. Trends Cell Biol 2002; 12 : 332–9. [Google Scholar]
  61. Elinson RP, Houliston E. Cytoskeleton in Xenopus oocytes and eggs. Sem Cell Biol 1990; 1 : 349–57. [Google Scholar]
  62. Marrari Y, Terasaki M, Arrowsmith V, Houliston E. Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 2000; 224 : 250–62. [Google Scholar]
  63. Miller JR, Rowning BA, Larabell CA, et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 1999; 146 : 427–37. [Google Scholar]
  64. Larabell CA, Torres M, Rowning BA, et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 1997; 136 : 1123–36. [Google Scholar]
  65. Beckhelling C, Perez-Mongiovi D, Houliston E. Localised MPF regulation in eggs. Biol Cell 2000; 92 : 245–53. [Google Scholar]
  66. Perez-Mongiovi D, Beckhelling C, Chang P, et al. E. Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts. J Cell Biol 2000; 150 : 963–74. [Google Scholar]
  67. Marikawa Y, Elinson RP. Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 1999; 89 : 93–102. [Google Scholar]
  68. Nishida H. Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol 1997; 176 : 245–306. [Google Scholar]
  69. Nishida H, Sawada K. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 2001; 409 : 724–9. [Google Scholar]
  70. Takamura K, Fujimura M, Yamaguchi Y. Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 2002; 212 : 11–8. [Google Scholar]
  71. Seydoux G, Schedl T. The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 2001; 203 : 139–85. [Google Scholar]
  72. Goldstein B. When cells tell their neighbors which direction to divide. Dev Dyn 2000; 218 : 23–9. [Google Scholar]
  73. Labouesse M, Mango SE. Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet 1999; 15 : 307–13. [Google Scholar]
  74. Horstadius S. Experimental embryology of echinoderms. London: Clarendon Press, 1973 [Google Scholar]
  75. Boveri T. Über die polarität des seeigeleies. Ver der Phys Med Ges zu Wuerzburg 1901; 34 : 145–75. [Google Scholar]
  76. Coffman JA, Davidson EH. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 2001; 230 : 18–28. [Google Scholar]
  77. Henry JJ, Raff RA. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 1990; 141 : 55–69. [Google Scholar]
  78. Gross JM, Peterson RE, Wu SY, McClay DR. LvTbx2/3: A T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 2003; 130 : 1989–99. [Google Scholar]
  79. Schroeder TE. Expressions of the prefertilization polar axis in sea urchin eggs. Dev Biol 1980; 79 : 428–43. [Google Scholar]
  80. Sardet C, Chang P. A marker of animal-vegetal polarity in the egg of the sea urchin Paracentrotus lividus. The pigment band. Exp Cell Res 1985; 160 : 73–82. [Google Scholar]
  81. Angerer LM, Angerer RC. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 2000; 218 : 1–2. [Google Scholar]
  82. Brandhorst BP, Klein WH. Molecular patterning along the sea urchin animal-vegetal axis. Int Rev Cytol 2002; 213 : 183–232. [Google Scholar]
  83. Emily-Fenouil F, Ghiglione C, Lhomond G, et al. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 1998; 125 : 2489–98. [Google Scholar]
  84. McClay DR, Peterson RE, Range RC, et al. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 2000; 127 : 5113–22. [Google Scholar]
  85. Sweet HC, Hodor PG, Ettensohn CA. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 1999; 126 : 5255–65. [Google Scholar]
  86. Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell 1999; 96 : 195–209. [Google Scholar]
  87. Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: Axis formation in the mouse embryo. Curr Opin Genet Dev 2001; 11 : 384–92. [Google Scholar]
  88. Zernicka-Goetz M. Patterning of the embryo: The first spatial decisions in the life of a mouse. Development 2002; 129 : 815–29. [Google Scholar]
  89. Weber RJ, Pedersen RA, Wianny F, et al. Polarity of the mouse embryo is anticipated before implantation. Development 1999; 126 : 5591–8. [Google Scholar]
  90. Gardner RL. Polarity in early mammalian development. Curr Opin Genet Dev 1999; 9 : 417–21. [Google Scholar]
  91. Ciemerych MA, Mesnard D, Zernicka-Goetz M. Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are non essential for development. Development 2000; 127 : 3467–74. [Google Scholar]
  92. Piotrowska K, Zernicka-Goetz M. Early patterning of the mouse embryo. Contributions of sperm and egg. Development 2002; 129 : 5803–13. [Google Scholar]
  93. Edwards RG. Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 2001; 3 : 138–60. [Google Scholar]
  94. Piotrowska K, Zernicka-Goetz M. Role for sperm in spatial patterning of the early mouse embryo. Nature 2001; 409 : 517–21. [Google Scholar]
  95. Johnson MH. Mammalian development: Axes in the egg ? Curr Biol 2001; 11 : R281–4. [Google Scholar]
  96. Deguchi R, Shirakawa H, Oda S, et al. Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal-vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev Biol 2000; 218 : 299–313. [Google Scholar]
  97. Ozil JP, Huneau D. Activation of rabbit oocytes: The impact of the Ca2+ signal regime on development. Development 2001; 128 : 917–28. [Google Scholar]
  98. Huxley JS. Problems of relative growth. New York : Dial Press, 1932. [Google Scholar]
  99. Chabry LM. Contribution à l’embryologie normale et tératologique des ascidies simples. J Anat Physiol Norm Pathol 1887; 23 : 167–321. [Google Scholar]
  100. Driesch D. The potency of the first two cleavage cells in echinoderm development : Experimental production of partial and double formation. New York, Hafner, 1974 : 1892. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.