Free Access
Issue
Med Sci (Paris)
Volume 20, Number 3, Mars 2004
Page(s) 346 - 351
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004203346
Published online 15 March 2004
  1. Nikaido H. Outer membrane. In : Neidhardt FC, ed. Escherichia coli and Salmonella : cellular and molecular biology. Washington DC : ASM Press, 1996 : 29–47. [Google Scholar]
  2. Nikaido H. Prevention of drug access to bacterial targets : permeability barriers and active efflux. Science 1994; 264 : 382–8. [Google Scholar]
  3. Hancock REW. The bacterial outer membrane as a drug barrier. Trends Microbiol 1997; 5 : 37–42. [Google Scholar]
  4. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins : barrels in a nutshell. Mol Microbiol 2000; 37 : 239–53. [Google Scholar]
  5. Schirmer T. General and specific porins from bacterial outer membranes. J Struct Biol 1998; 121 : 101–9. [Google Scholar]
  6. Zeth K, Diederichs K, Welte W, Engelhardt H. Crystal structure of Omp32, the anionselective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure Fold Des 2000; 8 : 981–92. [Google Scholar]
  7. Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two E.coli porins. Nature 1992; 358 : 727–33. [Google Scholar]
  8. Dutzler R, Rummel G, Alberti S, et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure Fold Des 1999; 7 : 425–34. [Google Scholar]
  9. Weiss MS, Kreusch A, Schiltz E, et al. The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 1991; 280 : 379–82. [Google Scholar]
  10. Kreusch A, Neubüser A, Schiltz E, et al. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci 1994; 3 : 58–63. [Google Scholar]
  11. Zimmermann W, Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 1977; 12 : 368–72. [Google Scholar]
  12. Tokunaga M, Tokunaga H, Nakae T. The outer membrane permeability of Gram-negative bacteria. Determination of permeability rate in reconstituted membrane vesicles. FEBS Lett 1979; 106 : 85–8. [Google Scholar]
  13. Nikaido H, Rosenberg EY. Porin channels in Escherichia coli. Studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153 : 241–52. [Google Scholar]
  14. Montal M, Müller P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc Natl Acad Sci USA 1972; 69 : 3561–6. [Google Scholar]
  15. Schindler H, Rosenbusch JP. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci USA 1978; 75 : 3751–5. [Google Scholar]
  16. Delcour AH, Martinac B, Kung C, Adler J. A modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 1989; 56 : 631–6. [Google Scholar]
  17. DelaVega AL, Delcour AH. Cadaverine induces closing of E. coli porins. EMBO J 1995; 14 : 6058–65. [Google Scholar]
  18. Iyer R, Delcour AH. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem 1997; 272 : 18595–601. [Google Scholar]
  19. Chevalier J, Mallea M, Pagès JM. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 2000; 348 : 223–7. [Google Scholar]
  20. Saint N, Lou KL, Widmer C, et al. Structural and functional characterization of OmpF porin mutants selected for larger pore size. Functional characterization. J Biol Chem 1996; 271 : 20676–80. [Google Scholar]
  21. Van Gelder P, Saint N, Phale P, et al. Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli : role of charged residues. J Mol Biol 1997; 269 : 468–72. [Google Scholar]
  22. Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44 : 311–15. [Google Scholar]
  23. Jeanteur D, Schirmer T, Fourel D, et al. Structural and functional alterations of a colicin resistant mutant of OmpF from E. coli. Proc Natl Acad Sci USA 1994; 91 : 10675–9. [Google Scholar]
  24. Bredin J, Saint N, Malléa M, et al. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop3 region. Biochem J 2002; 363 : 521–8. [Google Scholar]
  25. Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic aminoacids and peptides. J Biol Chem 1990; 265 : 15680–4. [Google Scholar]
  26. Karshikoff A, Spassov V, Cowan SA, et al. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol 1994; 240 : 372–84. [Google Scholar]
  27. Jeanteur D, Lakey JH, Pattus F. The bacterial porin superfamily : Sequence alignment and structure prediction. Mol Microbiol 1991; 5 : 2153–64. [Google Scholar]
  28. Iyer R, Wu Z, Woster PM, Delcour AH. Molecular basis for the polyamine-OmpF porin interactions : inhibitor and mutant studies. J Mol Biol 2000; 297 : 933–45. [Google Scholar]
  29. Dé E, Basle A, Jaquinod M, et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol 2001; 41 : 189–98. [Google Scholar]
  30. Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 2002; 184 : 5619–24. [Google Scholar]
  31. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae : its role in b-lactam antibiotic resistance. J Bacteriol 1999; 181 : 2726–32. [Google Scholar]
  32. Phale PS, Schirmer T, Prilipov A, et al. Voltage gating of Escherichia coli porin channels : role of the constriction loop. Proc Natl Acad Sci USA 1997; 94 : 6741–5. [Google Scholar]
  33. Eppens EF, Saint N, van Gelder P, et al. Role of the constriction loop in the gating of outer membrane porin PhoE of Escherichia coli. FEBS Lett 1997; 415 : 317–20. [Google Scholar]
  34. DelaVega AL, Delcour AH. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol 1996; 178 : 3715–21. [Google Scholar]
  35. Samartzidou H, Delcour AH. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 1999; 181 : 791–8. [Google Scholar]
  36. Nestorovich EK, Danelon C, Winterhalter M, Bezrukov SM. Designed to penetrate : time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA 2002; 99 : 9789–94. [Google Scholar]
  37. Bornet C, Davin-Regli A, Bosi C, et al. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane impermeability. J Clin Microbiol 2000; 38 : 1048–52. [Google Scholar]
  38. Delihas N, Frost S. MicF : an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313 : 1–12. [Google Scholar]
  39. Aleskun MN, Levy SB. The mar regulon : multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7 : 410–3. [Google Scholar]
  40. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. From acids to osmZ : multiple factors influence synthesis of OmpF and OmpC porins in Escherichia coli. Mol Microbiol 1996; 20 : 911–7. [Google Scholar]
  41. Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42 : 619–30. [Google Scholar]
  42. Vidal S, Brouant P, Chevalier J, et al. Computer simulation of spermine-porin channel interactions. In Vivo 2002; 16 : 111–6. [Google Scholar]
  43. Bredin J, Simonet V, Iyer R, et al. Colicins, spermine and cephalosporins : a competitive interaction with the OmpF eyelet. Biochem J 2003; 376 : 245–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.