Accès gratuit
Med Sci (Paris)
Volume 20, Numéro 3, Mars 2004
Page(s) 346 - 351
Section M/S revues
Publié en ligne 15 mars 2004
  1. Nikaido H. Outer membrane. In : Neidhardt FC, ed. Escherichia coli and Salmonella : cellular and molecular biology. Washington DC : ASM Press, 1996 : 29–47. [Google Scholar]
  2. Nikaido H. Prevention of drug access to bacterial targets : permeability barriers and active efflux. Science 1994; 264 : 382–8. [Google Scholar]
  3. Hancock REW. The bacterial outer membrane as a drug barrier. Trends Microbiol 1997; 5 : 37–42. [Google Scholar]
  4. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins : barrels in a nutshell. Mol Microbiol 2000; 37 : 239–53. [Google Scholar]
  5. Schirmer T. General and specific porins from bacterial outer membranes. J Struct Biol 1998; 121 : 101–9. [Google Scholar]
  6. Zeth K, Diederichs K, Welte W, Engelhardt H. Crystal structure of Omp32, the anionselective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure Fold Des 2000; 8 : 981–92. [Google Scholar]
  7. Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two E.coli porins. Nature 1992; 358 : 727–33. [Google Scholar]
  8. Dutzler R, Rummel G, Alberti S, et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure Fold Des 1999; 7 : 425–34. [Google Scholar]
  9. Weiss MS, Kreusch A, Schiltz E, et al. The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 1991; 280 : 379–82. [Google Scholar]
  10. Kreusch A, Neubüser A, Schiltz E, et al. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci 1994; 3 : 58–63. [Google Scholar]
  11. Zimmermann W, Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 1977; 12 : 368–72. [Google Scholar]
  12. Tokunaga M, Tokunaga H, Nakae T. The outer membrane permeability of Gram-negative bacteria. Determination of permeability rate in reconstituted membrane vesicles. FEBS Lett 1979; 106 : 85–8. [Google Scholar]
  13. Nikaido H, Rosenberg EY. Porin channels in Escherichia coli. Studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153 : 241–52. [Google Scholar]
  14. Montal M, Müller P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc Natl Acad Sci USA 1972; 69 : 3561–6. [Google Scholar]
  15. Schindler H, Rosenbusch JP. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci USA 1978; 75 : 3751–5. [Google Scholar]
  16. Delcour AH, Martinac B, Kung C, Adler J. A modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 1989; 56 : 631–6. [Google Scholar]
  17. DelaVega AL, Delcour AH. Cadaverine induces closing of E. coli porins. EMBO J 1995; 14 : 6058–65. [Google Scholar]
  18. Iyer R, Delcour AH. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem 1997; 272 : 18595–601. [Google Scholar]
  19. Chevalier J, Mallea M, Pagès JM. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 2000; 348 : 223–7. [Google Scholar]
  20. Saint N, Lou KL, Widmer C, et al. Structural and functional characterization of OmpF porin mutants selected for larger pore size. Functional characterization. J Biol Chem 1996; 271 : 20676–80. [Google Scholar]
  21. Van Gelder P, Saint N, Phale P, et al. Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli : role of charged residues. J Mol Biol 1997; 269 : 468–72. [Google Scholar]
  22. Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44 : 311–15. [Google Scholar]
  23. Jeanteur D, Schirmer T, Fourel D, et al. Structural and functional alterations of a colicin resistant mutant of OmpF from E. coli. Proc Natl Acad Sci USA 1994; 91 : 10675–9. [Google Scholar]
  24. Bredin J, Saint N, Malléa M, et al. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop3 region. Biochem J 2002; 363 : 521–8. [Google Scholar]
  25. Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic aminoacids and peptides. J Biol Chem 1990; 265 : 15680–4. [Google Scholar]
  26. Karshikoff A, Spassov V, Cowan SA, et al. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol 1994; 240 : 372–84. [Google Scholar]
  27. Jeanteur D, Lakey JH, Pattus F. The bacterial porin superfamily : Sequence alignment and structure prediction. Mol Microbiol 1991; 5 : 2153–64. [Google Scholar]
  28. Iyer R, Wu Z, Woster PM, Delcour AH. Molecular basis for the polyamine-OmpF porin interactions : inhibitor and mutant studies. J Mol Biol 2000; 297 : 933–45. [Google Scholar]
  29. Dé E, Basle A, Jaquinod M, et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol 2001; 41 : 189–98. [Google Scholar]
  30. Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 2002; 184 : 5619–24. [Google Scholar]
  31. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae : its role in b-lactam antibiotic resistance. J Bacteriol 1999; 181 : 2726–32. [Google Scholar]
  32. Phale PS, Schirmer T, Prilipov A, et al. Voltage gating of Escherichia coli porin channels : role of the constriction loop. Proc Natl Acad Sci USA 1997; 94 : 6741–5. [Google Scholar]
  33. Eppens EF, Saint N, van Gelder P, et al. Role of the constriction loop in the gating of outer membrane porin PhoE of Escherichia coli. FEBS Lett 1997; 415 : 317–20. [Google Scholar]
  34. DelaVega AL, Delcour AH. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol 1996; 178 : 3715–21. [Google Scholar]
  35. Samartzidou H, Delcour AH. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 1999; 181 : 791–8. [Google Scholar]
  36. Nestorovich EK, Danelon C, Winterhalter M, Bezrukov SM. Designed to penetrate : time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA 2002; 99 : 9789–94. [Google Scholar]
  37. Bornet C, Davin-Regli A, Bosi C, et al. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane impermeability. J Clin Microbiol 2000; 38 : 1048–52. [Google Scholar]
  38. Delihas N, Frost S. MicF : an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313 : 1–12. [Google Scholar]
  39. Aleskun MN, Levy SB. The mar regulon : multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7 : 410–3. [Google Scholar]
  40. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. From acids to osmZ : multiple factors influence synthesis of OmpF and OmpC porins in Escherichia coli. Mol Microbiol 1996; 20 : 911–7. [Google Scholar]
  41. Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42 : 619–30. [Google Scholar]
  42. Vidal S, Brouant P, Chevalier J, et al. Computer simulation of spermine-porin channel interactions. In Vivo 2002; 16 : 111–6. [Google Scholar]
  43. Bredin J, Simonet V, Iyer R, et al. Colicins, spermine and cephalosporins : a competitive interaction with the OmpF eyelet. Biochem J 2003; 376 : 245–52. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.