Free Access
Issue
Med Sci (Paris)
Volume 20, Number 1, Janvier 2004
Page(s) 37 - 44
Section M/S revues
DOI https://doi.org/10.1051/medsci/200420137
Published online 15 January 2004
  1. Hadjiolov AA. The nucleolus and ribosome biogenesis. Wien-New York : Springer-Verlag, 1985 : 268 p. [Google Scholar]
  2. Shaw PJ, Jordan EG. The nucleolus. Annu Rev Cell Dev Biol 1995; 11 : 93–121. [Google Scholar]
  3. Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol 1999; 11 : 385–90. [Google Scholar]
  4. Comai L. The nucleolus : a paradigm for cell proliferation and aging. Braz J Med Biol Res 1999; 32 : 1473–8. [Google Scholar]
  5. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998; 26 : 3871–6. [Google Scholar]
  6. Visintin R, Amon A. The nucleolus : the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 2000; 12 : 372–7. [Google Scholar]
  7. Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12 : 1–11. [Google Scholar]
  8. Leung AK, Lamond AI. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol 2002; 157 : 615–29. [Google Scholar]
  9. Fox AH, Lam YW, Leung AKL, et al. Paraspeckles : a novel nuclear domain. Curr Biol 2002; 12 : 13–25. [Google Scholar]
  10. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2 : 292–301. [Google Scholar]
  11. Strouboulis J, Wolffe AP. Functional compartmentalization of the nucleus. J Cell Sci 1996; 109 : 1991–2000. [Google Scholar]
  12. Mélèse T, Xue Z. The nucleolus : an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 1995; 7 : 319–24. [Google Scholar]
  13. Trumtel S, Léger-Silvestre I, Gleizes PE, Teulières F, Gas N. Assembly and functional organization of the nucleolus : ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol Biol Cell 2000; 11 : 2175–89. [Google Scholar]
  14. Conconi A, Widmer RM, Koller T, Sogo JM. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 1989; 57 : 753–61. [Google Scholar]
  15. Dammann R, Lucchini R, Koller T, Sogo JM. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21 : 2331–8. [Google Scholar]
  16. Shou W, Sakamoto KM, Keener J, et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 2001; 8 : 45–55. [Google Scholar]
  17. Dammann R, Lucchini R, Koller T, Sogo JM. Transcription in the yeast rRNA gene locus : distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 1995; 15 : 5294–303. [Google Scholar]
  18. Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D. Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 1997; 8 : 145–56. [Google Scholar]
  19. Gébrane-Younès J, Fomproix N, Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 1997; 110 : 2429–40. [Google Scholar]
  20. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acids Res Mol Biol 1999; 62 : 109–54. [Google Scholar]
  21. Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 2002; 109 : 297–306. [Google Scholar]
  22. Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999; 33 : 261–311. [Google Scholar]
  23. Filipowicz W, Pogacic V. Biogenesis of small nucleolar robonucleoproteins. Curr Opin Cell Biol 2002; 14 : 319–27. [Google Scholar]
  24. Mitchell P, Petfalski E, Tollervey D. The 3’ end of the yeast 5.8 rRNA is generated by an exonuclease processing mechanism. Genes Dev 1996; 10 : 502–13. [Google Scholar]
  25. Tanner K, Linder P. DExD/H box RNA helicases : from generic motors to specific dissociation functions. Mol Cell 2001; 8 : 251–62. [Google Scholar]
  26. Savino TM, Gébrane-Younès J, De Mey J, Sibarita JB, Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 2001; 153 : 1097–110. [Google Scholar]
  27. Harnpicharnchai P, Jakovljevic J, Horsey E, et al. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell 2001; 8 : 505–15. [Google Scholar]
  28. Allmang C, Tollervey D. The role of the 3’ external transcribed spacer in yeast pre-rRNA processing. J Mol Biol 1998; 278 : 67–78. [Google Scholar]
  29. Sirri V, Hernandez-Verdun D, Roussel P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 2002; 156 : 969–81. [Google Scholar]
  30. Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 1992; 58 : 149–62. [Google Scholar]
  31. Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with 5’ETS leader probe. Chromosoma 1997; 105 : 496–505. [Google Scholar]
  32. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polmerase I transcription. Mol Biol Cell 2000; 11 : 2705–17. [Google Scholar]
  33. Le Panse S, Masson C, Héliot L, Chassery JM, Junéra HR, Hernandez-Verdun D. 3-D organization of single ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 1999; 112 : 2145–54. [Google Scholar]
  34. Haaf T, Ward DC. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 1996; 224 : 163–73. [Google Scholar]
  35. Roussel P, André C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 1996; 133 : 235–46. [Google Scholar]
  36. Sirri V, Roussel P, Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 1999; 112 : 3259–68. [Google Scholar]
  37. Sirri V, Roussel P, Hernandez-Verdun D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol 2000; 148 : 259–70. [Google Scholar]
  38. Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 1998; 142 : 1167–80. [Google Scholar]
  39. Verheggen C, Almouzni G, Hernandez-Verdun D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J Cell Biol 2000; 149 : 293–305. [Google Scholar]
  40. Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 1999; 18 : 1891–9. [Google Scholar]
  41. Panov KI, Friedrich JK, Zomerdijk JCBM. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 2001; 21 : 2641–9. [Google Scholar]
  42. Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by rb gene product. Nature 1995; 374 : 177–80. [Google Scholar]
  43. David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D. Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 2001; 20 : 5951–63. [Google Scholar]
  44. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and cell cycle : effects of nucleolar protein Bop1 on G1/S transition. Mol Cell Biol 2001; 21 : 4246–55. [Google Scholar]
  45. Marciniak RA, Lombard DB, Johnson FB, Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 1998; 95 : 6887–92. [Google Scholar]
  46. Sinclair DA, Mills K, Guarente I. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 1997; 277 : 1313–6. [Google Scholar]
  47. Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. WRN helicase accelarates the transcription of ribosomal RNA as a component of an RNA polymerase I-associated complex. Oncogene 2002; 21 : 2447–54. [Google Scholar]
  48. Dixon J, Edwards SJ, Anderson I, Brass A, Scambler PJ, Dixon MJ. Identification of the complete coding requence and genomic organization of the treacher Collins syndrome gene. Genome res 1997; 7 : 223–34. [Google Scholar]
  49. Isaac C, Marsh KL, Paznekas WA, et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11 : 3061–71. [Google Scholar]
  50. Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic acids Res 2001; 29 : 598–603. [Google Scholar]
  51. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 2001; 20 : 1373–82. [Google Scholar]
  52. Längst G, Becker PB, Grummt I. TTF-1 determines the chromatin architecture of the active rDNA promoter. EMBO J 1998; 17 : 3135–43. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.