Accès gratuit
Med Sci (Paris)
Volume 20, Numéro 1, Janvier 2004
Page(s) 37 - 44
Section M/S revues
Publié en ligne 15 janvier 2004
  1. Hadjiolov AA. The nucleolus and ribosome biogenesis. Wien-New York : Springer-Verlag, 1985 : 268 p. [Google Scholar]
  2. Shaw PJ, Jordan EG. The nucleolus. Annu Rev Cell Dev Biol 1995; 11 : 93–121. [Google Scholar]
  3. Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol 1999; 11 : 385–90. [Google Scholar]
  4. Comai L. The nucleolus : a paradigm for cell proliferation and aging. Braz J Med Biol Res 1999; 32 : 1473–8. [Google Scholar]
  5. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998; 26 : 3871–6. [Google Scholar]
  6. Visintin R, Amon A. The nucleolus : the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 2000; 12 : 372–7. [Google Scholar]
  7. Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12 : 1–11. [Google Scholar]
  8. Leung AK, Lamond AI. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol 2002; 157 : 615–29. [Google Scholar]
  9. Fox AH, Lam YW, Leung AKL, et al. Paraspeckles : a novel nuclear domain. Curr Biol 2002; 12 : 13–25. [Google Scholar]
  10. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2 : 292–301. [Google Scholar]
  11. Strouboulis J, Wolffe AP. Functional compartmentalization of the nucleus. J Cell Sci 1996; 109 : 1991–2000. [Google Scholar]
  12. Mélèse T, Xue Z. The nucleolus : an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 1995; 7 : 319–24. [Google Scholar]
  13. Trumtel S, Léger-Silvestre I, Gleizes PE, Teulières F, Gas N. Assembly and functional organization of the nucleolus : ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol Biol Cell 2000; 11 : 2175–89. [Google Scholar]
  14. Conconi A, Widmer RM, Koller T, Sogo JM. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 1989; 57 : 753–61. [Google Scholar]
  15. Dammann R, Lucchini R, Koller T, Sogo JM. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21 : 2331–8. [Google Scholar]
  16. Shou W, Sakamoto KM, Keener J, et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 2001; 8 : 45–55. [Google Scholar]
  17. Dammann R, Lucchini R, Koller T, Sogo JM. Transcription in the yeast rRNA gene locus : distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 1995; 15 : 5294–303. [Google Scholar]
  18. Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D. Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 1997; 8 : 145–56. [Google Scholar]
  19. Gébrane-Younès J, Fomproix N, Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 1997; 110 : 2429–40. [Google Scholar]
  20. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acids Res Mol Biol 1999; 62 : 109–54. [Google Scholar]
  21. Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 2002; 109 : 297–306. [Google Scholar]
  22. Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999; 33 : 261–311. [Google Scholar]
  23. Filipowicz W, Pogacic V. Biogenesis of small nucleolar robonucleoproteins. Curr Opin Cell Biol 2002; 14 : 319–27. [Google Scholar]
  24. Mitchell P, Petfalski E, Tollervey D. The 3’ end of the yeast 5.8 rRNA is generated by an exonuclease processing mechanism. Genes Dev 1996; 10 : 502–13. [Google Scholar]
  25. Tanner K, Linder P. DExD/H box RNA helicases : from generic motors to specific dissociation functions. Mol Cell 2001; 8 : 251–62. [Google Scholar]
  26. Savino TM, Gébrane-Younès J, De Mey J, Sibarita JB, Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 2001; 153 : 1097–110. [Google Scholar]
  27. Harnpicharnchai P, Jakovljevic J, Horsey E, et al. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell 2001; 8 : 505–15. [Google Scholar]
  28. Allmang C, Tollervey D. The role of the 3’ external transcribed spacer in yeast pre-rRNA processing. J Mol Biol 1998; 278 : 67–78. [Google Scholar]
  29. Sirri V, Hernandez-Verdun D, Roussel P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 2002; 156 : 969–81. [Google Scholar]
  30. Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 1992; 58 : 149–62. [Google Scholar]
  31. Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with 5’ETS leader probe. Chromosoma 1997; 105 : 496–505. [Google Scholar]
  32. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polmerase I transcription. Mol Biol Cell 2000; 11 : 2705–17. [Google Scholar]
  33. Le Panse S, Masson C, Héliot L, Chassery JM, Junéra HR, Hernandez-Verdun D. 3-D organization of single ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 1999; 112 : 2145–54. [Google Scholar]
  34. Haaf T, Ward DC. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 1996; 224 : 163–73. [Google Scholar]
  35. Roussel P, André C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 1996; 133 : 235–46. [Google Scholar]
  36. Sirri V, Roussel P, Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 1999; 112 : 3259–68. [Google Scholar]
  37. Sirri V, Roussel P, Hernandez-Verdun D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol 2000; 148 : 259–70. [Google Scholar]
  38. Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 1998; 142 : 1167–80. [Google Scholar]
  39. Verheggen C, Almouzni G, Hernandez-Verdun D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J Cell Biol 2000; 149 : 293–305. [Google Scholar]
  40. Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 1999; 18 : 1891–9. [Google Scholar]
  41. Panov KI, Friedrich JK, Zomerdijk JCBM. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 2001; 21 : 2641–9. [Google Scholar]
  42. Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by rb gene product. Nature 1995; 374 : 177–80. [Google Scholar]
  43. David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D. Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 2001; 20 : 5951–63. [Google Scholar]
  44. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and cell cycle : effects of nucleolar protein Bop1 on G1/S transition. Mol Cell Biol 2001; 21 : 4246–55. [Google Scholar]
  45. Marciniak RA, Lombard DB, Johnson FB, Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 1998; 95 : 6887–92. [Google Scholar]
  46. Sinclair DA, Mills K, Guarente I. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 1997; 277 : 1313–6. [Google Scholar]
  47. Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. WRN helicase accelarates the transcription of ribosomal RNA as a component of an RNA polymerase I-associated complex. Oncogene 2002; 21 : 2447–54. [Google Scholar]
  48. Dixon J, Edwards SJ, Anderson I, Brass A, Scambler PJ, Dixon MJ. Identification of the complete coding requence and genomic organization of the treacher Collins syndrome gene. Genome res 1997; 7 : 223–34. [Google Scholar]
  49. Isaac C, Marsh KL, Paznekas WA, et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11 : 3061–71. [Google Scholar]
  50. Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic acids Res 2001; 29 : 598–603. [Google Scholar]
  51. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 2001; 20 : 1373–82. [Google Scholar]
  52. Längst G, Becker PB, Grummt I. TTF-1 determines the chromatin architecture of the active rDNA promoter. EMBO J 1998; 17 : 3135–43. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.