Free Access
Med Sci (Paris)
Volume 19, Number 8-9, Août-Septembre 2003
Page(s) 860 - 863
Section M/S Revues
Published online 15 August 2003
  1. Ørskov C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 1992; 35: 701–11. [Google Scholar]
  2. Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretinvasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 2861–70. [Google Scholar]
  3. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide I. Proc Natl Acad Sci USA 1992; 89: 8641–5. [Google Scholar]
  4. Weir GC, Mojsov S, Hendrick GK, Habener JF. Glucagonlike peptide 1 (7-37) actions on endocrine pancreas. Diabetes 1989; 38: 338–42. [Google Scholar]
  5. Ozaki N, Shibasaki T, Kashima Y, et al. cAMPGEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000; 2: 805–11. [Google Scholar]
  6. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–6. [Google Scholar]
  7. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B. Persistent improvement of type 2 diabetes in the Goto- Kakizaki rat model by expansion of the β-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002; 51: 1443–52. [Google Scholar]
  8. Stoffers DA, Kieffer TJ, Hussain MA, et al.Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49: 741–8. [Google Scholar]
  9. Ehses JA, Pelech SL, Pederson RA, McIntosh CHS. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2- ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1- mediated pathway. J Biol Chem 2002; 277: 37088–97. [Google Scholar]
  10. Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate rafindependent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic β-cells. J Biol Chem 2002; 277 : 48146–51. [Google Scholar]
  11. Schjoldager BTG, Mortensen PE, Christiansen J, Ørskov C, Holst JJ. GLP-1 (glucagonlike peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig Dis Sci 1989; 3 : 703–8. [Google Scholar]
  12. Wettergren A, Vojdemann M, Holst JJ. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol 1998; 275: G984–92. [Google Scholar]
  13. Turton MD, O’SHea D, Gunn I, et al. A role for glucagonlike peptide-1 in the central regulation of feeding. Nature 1996; 379: 69–72. [Google Scholar]
  14. Szayna M, Doyle ME, Betkey JA, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000; 141: 1936–41. [Google Scholar]
  15. Larsen PJ, Tang-Christansen M, Holst JJ, Ørskov C. Distribution of glucagonlike peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 1997; 77: 257–70. [Google Scholar]
  16. Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice. Diabetes 2000; 49: 1643–8. [Google Scholar]
  17. Burcelin R, DaCosta A, Drucker D, Thorens B. Glucose competence of the hepatoporal vein sensor requires the presence of an activated GLP-1 receptor. Diabetes 2001; 50: 1720–8. [Google Scholar]
  18. Scrocchi LA, Brown TJ, MacLusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagonlike peptide-1 receptor gene. Nat Med 1996; 2: 1254–8. [Google Scholar]
  19. Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 14843–7. [Google Scholar]
  20. Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8: 738–42. [Google Scholar]
  21. Rachman J, Gribble FM, Barrows BE, Levy JC, Buchanan KD, Turner RC. Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7- 36) amide in patients with NIDDM. Diabetes 1996; 45: 1524–30. [Google Scholar]
  22. Rachman J, Barrows BA, Levy JC, Turner RC. Nearnormalization of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjets with NIDDM. Diabetologia 1997; 40: 205–11. [Google Scholar]
  23. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagonlike peptide 1 on glycaemic control, insulin sensitivity, and β cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359: 824–30. [Google Scholar]
  24. Holst JJ. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev 2002; 18: 430–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.