Free Access
Med Sci (Paris)
Volume 19, Number 6-7, Juin-Juillet 2003
Page(s) 735 - 742
Section M/S Revues
Published online 15 June 2003
  1. Sausville EA. Complexities in the development of cyclindependent kinase inhibitor drugs. Trends Mol Med 2002; 8: S32–7. [Google Scholar]
  2. Rappaport R. Cytokinesis in animal cells. Int Rev Cytol 1971; 31: 169–213. [Google Scholar]
  3. Wallenfang MR, Seydoux G. Polarization of the anteriorposterior axis of C. elegans is a microtubule-directed process. Nature 2000; 408 : 89–92. [Google Scholar]
  4. Goldstein B, Hird SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996; 122: 1467–74. [Google Scholar]
  5. Kemphues KJ, Strome S. Fertilization and establishment of polarity in the embryo. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C. elegans II. New York : Cold Spring Harbor Laboratory Press, 1997 : 335–59. [Google Scholar]
  6. Gotta M, Ahringer J. Axis determination in C. elegans : initiating and transducing polarity. Curr Opin Genet Dev 2001; 11 : 367–73. [Google Scholar]
  7. Etemad-Moghadam B, Guo S, Kemphues KJ, Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignement in early C. elegans embryos. Cell 1995; 83: 743–52. [Google Scholar]
  8. Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domaincontaining protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 1999; 126: 127–35. [Google Scholar]
  9. Boyd L, Guo S, Levitan D, Stinchcomb DT, Kemphues KJ. PAR-2 is asymmetricallydistributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 1996; 122: 3075–84. [Google Scholar]
  10. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1195; 81: 611–20. [Google Scholar]
  11. Izumi Y, Hirose T, Tamai Y, et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998; 143: 95–106. [Google Scholar]
  12. Bohm H, Brinkmann V, Drab M, Henske A, Kurzchalier TV. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr Biol 1997; 7: 603–6. [Google Scholar]
  13. Kemphues K. PARsing embryonic polarity. Cell 2000; 101: 345–8. [Google Scholar]
  14. Mello CC, Schubert C, Draper B, et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature 1996; 382: 710–2. [Google Scholar]
  15. Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 2000; 5: 671–82. [Google Scholar]
  16. Bowerman B. Maternal control of pattern formation in early Caenorhabditis elegans embryos. Curr Top Dev Biol 1998; 39: 73–117. [Google Scholar]
  17. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100: 64–119. [Google Scholar]
  18. Oegema K, Desai A, Rybina M, Kirkham M, Hyman AA. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 2001; 153: 1209–26. [Google Scholar]
  19. Strome S, Wood WB. Generation of asymmetry and segregation of germline granules in early C. elegans embryos. Cell 1983; 35: 15–25. [Google Scholar]
  20. Hyman AA. Centrosome movement in the early divisions of Caenorhabditis elegans : a cortical site determining centrosome position. J Cell Biol 1989; 109: 1185–93. [Google Scholar]
  21. Gönczy P, Schnabel H, Kaletta T, et al. Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J Cell Biol 1999; 144: 927–46. [Google Scholar]
  22. O’Connell KF, Leys CM, White JG. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 1998; 149: 1303–21. [Google Scholar]
  23. Fraser AG, Kamath RS, Zipperlen P, Martinez- Campos M, Sohmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408: 325–30. [Google Scholar]
  24. Gönczy P, Echeverri G, Degema K, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 2000; 408: 331–6. [Google Scholar]
  25. Piano F, Schetter AJ, Mangona M, Stain L, Komphues KJ. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol 2000; 10: 1619–22. [Google Scholar]
  26. Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elega ns by high-throughput RNAi. Curr Biol 2001; 11: 171–6. [Google Scholar]
  27. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988; 52: 311–20. [Google Scholar]
  28. Grill SW, Gönczy P, Stelzer EH, Hymen AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001; 409: 630–3. [Google Scholar]
  29. Leslie RJ, Pickett HJ. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol 1983; 96: 548–61. [Google Scholar]
  30. Aist JR, Liang H, Mangona M, Stain L, Komphues KJ. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci 1993; 104: 1207–16. [Google Scholar]
  31. Gotta M, Ahringer J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 2001; 3: 297–300. [Google Scholar]
  32. Schaefer M, Petronczki M, Dorner D, Forto M, Knoblirh JA. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 2001; 107: 183–94. [Google Scholar]
  33. Schaefer M, Shevchenko A, Knoblich JA. A protein complex Shevchemke A, containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 2000; 10: 353–62. [Google Scholar]
  34. Roychowdhury S, Panda D, Wilson L, Rasemick MH. G protein α subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J Biol Chem 1999; 274: 13485–90. [Google Scholar]
  35. Gönczy P, Bellanger JM, Kirkham M, et al. zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortinrelated kinase that promotes microtubule assembly. Dev Cell 2001; 1: 363–75. [Google Scholar]
  36. des Portes V, Pinard JM, Billuart P, et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92: 51–61. [Google Scholar]
  37. Gleeson JG, Allen KM, Fox JW, et al. Doublecortin, a brainspecific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92: 63–72. [Google Scholar]
  38. O’Connell KF, Caron C, Kopish KR, et al. The C. elegans zyg- 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 2001; 105: 547–58. [Google Scholar]
  39. Jantsch-Plunger V, Gönczy P Romano A, et al. CYK-4, a rho family GTPase activating protein (gap) required for central spindle formation and cytokinesis. J Cell Biol 2000; 149: 1391–404. [Google Scholar]
  40. Mishima M, Kaitna S, Glotzer M, et al. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2002; 2:41–54. [Google Scholar]
  41. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–11. [Google Scholar]
  42. Zipperlen P, Fraser AG, Lendeckel W, Yalcin A, Welber K, Tuschl T. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J 2001; 20: 3984–92. [Google Scholar]
  43. Elbashir SM, Harborth J, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–8. [Google Scholar]
  44. Gönczy P. Mechanisms of spindle positioning in flies and worms. Trends Cell Biol 2002; 12: 332–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.