Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 6-7, Juin-Juillet 2003
Page(s) 735 - 742
Section M/S Revues
Publié en ligne 15 juin 2003
  1. Sausville EA. Complexities in the development of cyclindependent kinase inhibitor drugs. Trends Mol Med 2002; 8: S32–7. [Google Scholar]
  2. Rappaport R. Cytokinesis in animal cells. Int Rev Cytol 1971; 31: 169–213. [Google Scholar]
  3. Wallenfang MR, Seydoux G. Polarization of the anteriorposterior axis of C. elegans is a microtubule-directed process. Nature 2000; 408 : 89–92. [Google Scholar]
  4. Goldstein B, Hird SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996; 122: 1467–74. [Google Scholar]
  5. Kemphues KJ, Strome S. Fertilization and establishment of polarity in the embryo. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C. elegans II. New York : Cold Spring Harbor Laboratory Press, 1997 : 335–59. [Google Scholar]
  6. Gotta M, Ahringer J. Axis determination in C. elegans : initiating and transducing polarity. Curr Opin Genet Dev 2001; 11 : 367–73. [Google Scholar]
  7. Etemad-Moghadam B, Guo S, Kemphues KJ, Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignement in early C. elegans embryos. Cell 1995; 83: 743–52. [Google Scholar]
  8. Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domaincontaining protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 1999; 126: 127–35. [Google Scholar]
  9. Boyd L, Guo S, Levitan D, Stinchcomb DT, Kemphues KJ. PAR-2 is asymmetricallydistributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 1996; 122: 3075–84. [Google Scholar]
  10. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1195; 81: 611–20. [Google Scholar]
  11. Izumi Y, Hirose T, Tamai Y, et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998; 143: 95–106. [Google Scholar]
  12. Bohm H, Brinkmann V, Drab M, Henske A, Kurzchalier TV. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr Biol 1997; 7: 603–6. [Google Scholar]
  13. Kemphues K. PARsing embryonic polarity. Cell 2000; 101: 345–8. [Google Scholar]
  14. Mello CC, Schubert C, Draper B, et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature 1996; 382: 710–2. [Google Scholar]
  15. Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 2000; 5: 671–82. [Google Scholar]
  16. Bowerman B. Maternal control of pattern formation in early Caenorhabditis elegans embryos. Curr Top Dev Biol 1998; 39: 73–117. [Google Scholar]
  17. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100: 64–119. [Google Scholar]
  18. Oegema K, Desai A, Rybina M, Kirkham M, Hyman AA. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 2001; 153: 1209–26. [Google Scholar]
  19. Strome S, Wood WB. Generation of asymmetry and segregation of germline granules in early C. elegans embryos. Cell 1983; 35: 15–25. [Google Scholar]
  20. Hyman AA. Centrosome movement in the early divisions of Caenorhabditis elegans : a cortical site determining centrosome position. J Cell Biol 1989; 109: 1185–93. [Google Scholar]
  21. Gönczy P, Schnabel H, Kaletta T, et al. Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J Cell Biol 1999; 144: 927–46. [Google Scholar]
  22. O’Connell KF, Leys CM, White JG. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 1998; 149: 1303–21. [Google Scholar]
  23. Fraser AG, Kamath RS, Zipperlen P, Martinez- Campos M, Sohmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408: 325–30. [Google Scholar]
  24. Gönczy P, Echeverri G, Degema K, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 2000; 408: 331–6. [Google Scholar]
  25. Piano F, Schetter AJ, Mangona M, Stain L, Komphues KJ. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol 2000; 10: 1619–22. [Google Scholar]
  26. Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elega ns by high-throughput RNAi. Curr Biol 2001; 11: 171–6. [Google Scholar]
  27. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988; 52: 311–20. [Google Scholar]
  28. Grill SW, Gönczy P, Stelzer EH, Hymen AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001; 409: 630–3. [Google Scholar]
  29. Leslie RJ, Pickett HJ. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol 1983; 96: 548–61. [Google Scholar]
  30. Aist JR, Liang H, Mangona M, Stain L, Komphues KJ. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci 1993; 104: 1207–16. [Google Scholar]
  31. Gotta M, Ahringer J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 2001; 3: 297–300. [Google Scholar]
  32. Schaefer M, Petronczki M, Dorner D, Forto M, Knoblirh JA. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 2001; 107: 183–94. [Google Scholar]
  33. Schaefer M, Shevchenko A, Knoblich JA. A protein complex Shevchemke A, containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 2000; 10: 353–62. [Google Scholar]
  34. Roychowdhury S, Panda D, Wilson L, Rasemick MH. G protein α subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J Biol Chem 1999; 274: 13485–90. [Google Scholar]
  35. Gönczy P, Bellanger JM, Kirkham M, et al. zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortinrelated kinase that promotes microtubule assembly. Dev Cell 2001; 1: 363–75. [Google Scholar]
  36. des Portes V, Pinard JM, Billuart P, et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998; 92: 51–61. [Google Scholar]
  37. Gleeson JG, Allen KM, Fox JW, et al. Doublecortin, a brainspecific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92: 63–72. [Google Scholar]
  38. O’Connell KF, Caron C, Kopish KR, et al. The C. elegans zyg- 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 2001; 105: 547–58. [Google Scholar]
  39. Jantsch-Plunger V, Gönczy P Romano A, et al. CYK-4, a rho family GTPase activating protein (gap) required for central spindle formation and cytokinesis. J Cell Biol 2000; 149: 1391–404. [Google Scholar]
  40. Mishima M, Kaitna S, Glotzer M, et al. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2002; 2:41–54. [Google Scholar]
  41. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–11. [Google Scholar]
  42. Zipperlen P, Fraser AG, Lendeckel W, Yalcin A, Welber K, Tuschl T. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J 2001; 20: 3984–92. [Google Scholar]
  43. Elbashir SM, Harborth J, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–8. [Google Scholar]
  44. Gönczy P. Mechanisms of spindle positioning in flies and worms. Trends Cell Biol 2002; 12: 332–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.