Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 6-7, Juin-Juillet 2003
Page(s) 725 - 734
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20031967725
Publié en ligne 15 juin 2003
  1. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77: 71–94. [Google Scholar]
  2. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1984; 314: 1–340. [Google Scholar]
  3. Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science 1998; 282: 2028–33. [Google Scholar]
  4. Genome sequence of the nematode C. elegans: A platform for investigating biology. The C. elegans Sequencing Consortium. Science 1998; 282: 2012–8. [Google Scholar]
  5. Jin Y, Jorgensen E, Hartwieg E, Horvitz HR. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 1999; 19: 539–48. [Google Scholar]
  6. Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990; 4: 61–85. [Google Scholar]
  7. Chan SS, Zheng H, Su MW, et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 1996; 87: 187–95. [Google Scholar]
  8. Leung-Hagesteijn C, Spence AM, Stern BD, et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 1992; 71: 289–99. [Google Scholar]
  9. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowthpromoting proteins homologous to C. elegans UNC-6. Cell 1994; 78: 409–24. [Google Scholar]
  10. Keino-Masu K, Masu M, Hinck L, et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 1996; 87: 175–85. [Google Scholar]
  11. Colavita A, Culotti JG. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev Biol 1998; 194: 72–85. [Google Scholar]
  12. Colavita A, Krishna S, Zheng H, Padgett R W, Culotti JG. Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 1998; 281: 706–9. [Google Scholar]
  13. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 1994; 263: 802–5. [Google Scholar]
  14. Huang X, Cheng HJ, Tessier- Lavigne M, Jin Y. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron 2002; 34: 563–76. [Google Scholar]
  15. Hao JC, Yu TW, Fujisawa K, et al. C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX- 3/Robo receptor. Neuron 2001; 32: 25–38. [Google Scholar]
  16. Yu TW, Bargmann CI. Dynamic regulation of axon guidance. Nat Neurosci 2001; 4 Suppl: 1169–76. [Google Scholar]
  17. Branda CS, Stern MJ. Cell migration and axon growth cone guidance in Caenorhabditis elegans. Curr Opin Genet Dev 1999; 9: 479–84. [Google Scholar]
  18. Knobel KM, Jorgensen EM, Bastiani MJ. Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans. Development 1999; 126: 4489–98. [Google Scholar]
  19. White JG, Southgate E, Thomson JN. Mutations in the Caenorhabditis elegans unc-4 gene alter the synaptic input to ventral cord motor neurons. Nature 1992; 355: 838–41. [Google Scholar]
  20. Miller DM, Shen MM, Shamu CE, et al. C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons. Nature 1992; 355: 841–5. [Google Scholar]
  21. Winnier AR, Meir JY, Ross JM, et al. UNC-4/UNC-37- dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 1999; 13: 2774–86. [Google Scholar]
  22. Nonet ML. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein- GFP fusions. J Neurosci Methods 1999; 89: 33–40. [Google Scholar]
  23. Jin Y. Synaptogenesis: insights from worm and fly. Curr Opin Neurobiol 2002; 12: 71–9. [Google Scholar]
  24. Gally C, Bessereau JL. GABA is dispensable for the formation of junctional GABA receptor clusters in Caenorhabditis elegans. J Neurosci 2003; 23: 2591–9. [Google Scholar]
  25. Maruyama IN, Brenner S. A phorbol ester/diacylglycerolbinding protein encoded by the unc-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci U S A 1991; 88: 5729–33. [Google Scholar]
  26. Gengyo-Ando K, Kamiya Y, Yamakawa A, et al. The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron 1993; 11: 703–11. [Google Scholar]
  27. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A 1996; 93: 12593–8. [Google Scholar]
  28. Nonet ML, Saifee O, Zhao H, Rand JB, Wei L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 1998; 18: 70–80. [Google Scholar]
  29. Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM. Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 2000; 150: 589–600. [Google Scholar]
  30. Richmond JE, Jorgensen EM. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 1999; 2: 791–7. [Google Scholar]
  31. Richmond JE, Weimer RM, Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 2001; 412: 338–41. [Google Scholar]
  32. Christensen M, Estevez A, Yin X, et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 2002; 33: 503–14. [Google Scholar]
  33. Bargmann CI, Kaplan JM. Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci 1998; 21: 279–308. [Google Scholar]
  34. Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 1996; 84: 899–909. [Google Scholar]
  35. Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K. The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci U S A 1997; 94: 12162–7. [Google Scholar]
  36. Mori I. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu Rev Genet 1999; 33: 399–422. [Google Scholar]
  37. Gomez M, De Castro E, Guarin E, et al. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 2001; 30: 241–8. [Google Scholar]
  38. Richmond JE, Davis WS, Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 1999; 2: 959–64. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.