Free Access
Issue
Med Sci (Paris)
Volume 19, Number 5, Mai 2003
Page(s) 601 - 605
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003195601
Published online 15 May 2003
  1. Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci 2000; 57: 1577–92. [Google Scholar]
  2. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol 2001; 46: 1–32. [Google Scholar]
  3. Mann RK, Beachy PA. Cholesterol modification of proteins. Biochim Biophys Acta 2000; 1529: 188–202. [Google Scholar]
  4. Vanier MT. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res 1999; 24: 481–9. [Google Scholar]
  5. McNamara DJ. Dietary cholesterol and atherosclerosis. Biochim Biophys Acta 2000; 1529: 310–20. [Google Scholar]
  6. Danik M, Champagne D, Petit-Turcotte C, Beffert U, Poirier J. Brain lipoprotein metabolism and its relation to neurodegenerative disease. Crit Rev Neurobiol 1999; 13: 357–407. [Google Scholar]
  7. Fagan AM, Holtzman DM. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech 2000; 50: 297–304. [Google Scholar]
  8. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 2001; 12: 105–12. [Google Scholar]
  9. Mauch DH, Nägler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001; 294: 1354–7. [Google Scholar]
  10. Göritz C, Mauch DH, Nägler K, Pfrieger FW. Role of gliaderived cholesterol in synaptogenesis: new revelations in the synapseglia affair. J Physiol (Paris) 2002; 96: 257–63 [Google Scholar]
  11. Pfrieger FW. Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes ? Bioessays 2003; 25: 72–8. [Google Scholar]
  12. Pfrieger FW. Role of cholesterol in synapse formation and function. Biochim Biophys Acta 2003; 1610 : 271–80. [Google Scholar]
  13. Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells. Science 1997; 277: 1684–7. [Google Scholar]
  14. Nägler K, Mauch DH, Pfrieger FW. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 2001; 533: 665–79. [Google Scholar]
  15. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 2001; 291: 657–61. [Google Scholar]
  16. Jacobson M. Developmental neurobiology. New York: Plenum Press, 1991. [Google Scholar]
  17. Barres BA, Silverstein BE, Corey DP, Chun LLY. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988; 1: 791–803. [Google Scholar]
  18. Lang T, Bruns D, Wenzel D, et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001; 20: 2202–13. [Google Scholar]
  19. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1:31–9. [Google Scholar]
  20. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim Biophys Acta 1973; 320: 681–6. [Google Scholar]
  21. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2:42–9. [Google Scholar]
  22. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD. Role of phosphatidylinositol (4,5) bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002; 109: 347–58. [Google Scholar]
  23. Becher A, White JH, McIlhinney RA. The gammaaminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 2001; 79: 787–95. [Google Scholar]
  24. Meier J, Vannier C, Serge A, Triller A, Choquet D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 2001; 4: 253–60. [Google Scholar]
  25. Saito M, Benson EP, Saito M, Rosenberg A. Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J Neurosci Res 1987; 18: 319–25. [Google Scholar]
  26. LaDu MJ, Gilligan SM, Lukens JR, et al. Nascent astrocyte particles differ from lipoproteins in CSF. J Neurochem 1998; 70: 2070–81. [Google Scholar]
  27. DeMattos RB, Brendza RP, Heuser JE, et al. Purification and characterization of astrocyte-secreted apolipoprotein E and Jcontaining lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 2001; 39: 415–25. [Google Scholar]
  28. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1155–63. [Google Scholar]
  29. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–66. [Google Scholar]
  30. Michikawa M, Gong JS, Fan QW, Sawamura N, Yanagisawa K. A novel action of Alzheimer’s amyloid beta-protein (Abeta): oligomeric Abeta promotes lipid release. J Neurosci 2001; 21: 7226–35. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.