Free Access
Med Sci (Paris)
Volume 19, Number 2, Février 2003
Page(s) 217 - 222
Section M/S Revues
Published online 15 February 2003
  1. Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell 2000; 103: 227–38. [Google Scholar]
  2. Katzav S, Martin-Zanca D, Barbacid M. Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 1989; 8: 2283–90. [Google Scholar]
  3. Schuebel KE, Bustelo XR, Nielsen DA, et al. Isolation and characterization of murine vav2, a member of the vav family of protooncogenes. Oncogene 1996; 13: 363–71. [Google Scholar]
  4. Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 1999; 19: 7870–85. [Google Scholar]
  5. Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000; 20: 1461–77. [Google Scholar]
  6. Collins TL, Deckert M, Altman A. Views on Vav. Immunol Today 1997; 18: 221–5. [Google Scholar]
  7. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosinedependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997; 385: 169–72. [Google Scholar]
  8. Aghazadeh B, Lowry WE, Huang XY, Rosen, MK. Structural basis for relief of autoinhibition of the Dbl homology domain of protooncogene Vav by tyrosine phosphorylation. Cell 2000; 102: 625–33. [Google Scholar]
  9. Han J, Luby-Phelps K, Das B, et al. Role of substrates and products of PI 3- kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998; 279: 558–60. [Google Scholar]
  10. Das B, Shu X, Day GJ, et al. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J Biol Chem 2000; 275: 15074–81. [Google Scholar]
  11. Djouder N, Schmidt G, Frings M, Cavalie A, Thelen M, Aktories K. Rac and phosphatidylinositol 3- kinase regulate the protein kinase B in Fc epsilon RI signaling in RBL 2H3 mast cells. J Immunol 2001; 166: 1627–34. [Google Scholar]
  12. Inabe K, Ishiai M, Scharenberg AM, Freshney N, Downward J, Kurosaki T. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J Exp Med 2002; 195: 189–200. [Google Scholar]
  13. Schuebel KE, Movilla N, Rosa JL, Bustelo XR. Phosphorylationdependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 1998; 17: 6608–21. [Google Scholar]
  14. Fischer KD, Zmuldzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 1995; 374: 474–7. [Google Scholar]
  15. Kong YY, Fischer KD, Bachmann MF, et al. Vav regulates peptide-specific apoptosis in thymocytes. J Exp Med 1998; 188: 2099–111. [Google Scholar]
  16. Costello PS, Walters AE, Mee PJ, et al. The Rhofamily GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NFkappaB pathways. Proc Natl Acad Sci USA 1999; 96: 3035–40. [Google Scholar]
  17. Penninger JM, Fischer KD, Sasaki T, et al. The oncogene product Vav is a crucial regulator of primary cytotoxic T cell responses but has no apparent role in CD28-mediated costimulation. Eur J Immunol 1999; 29: 1709–18. [Google Scholar]
  18. Dood GM, Bell SE, Vigorito E, et al. Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat Immunol 2001; 2: 542–7. [Google Scholar]
  19. Tedford K, Nitschke L, Girkontaite I, et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat Immunol 2001; 2: 548–55. [Google Scholar]
  20. Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leuk Biol 2001; 69: 317–30. [Google Scholar]
  21. Kaminuma O, Deckert M, Elly C, Liu YC, Altman A. Vav-Rac1-mediated activation of the c-Jun Nterminal kinase/c-Jun/AP- 1 pathway plays a major role in stimulation of the distal NFAT site in the interleukin-2 gene promoter. Mol Cell Biol 2001; 21: 3126–36. [Google Scholar]
  22. Charvet C, Auberger P, Tartare-Deckert S, Bernard A, Deckert M. Vav1 couples T cell receptor to serum response factor-dependent transcription via a MEKdependent pathway. J Biol Chem 2002; 277: 15376–84. [Google Scholar]
  23. Doody GM, Billadeau DD, Clayton E. Vav-2 controls NFAT-dependent transcription in B- but not T-lymphocytes. EMBO J 2000; 19: 6173–84. [Google Scholar]
  24. Tartare-Deckert S, Monthouel MN, Charvet C, et al. Vav2 activates c-fos serum response element and CD69 expression, but negatively regulates NF-AT and IL-2 gene activation in T lymphocyte. J Biol Chem 2001; 276: 20849–57. [Google Scholar]
  25. Fackler OT, Lu X, Frost JA, et al. p21-activated kinase 1 plays a critical role in cellular activation by Nef. Mol Cell Biol 2000; 20: 2619–27. [Google Scholar]
  26. Mahana W, Zhao TM., Teller R, Robinson MA, Kindt TJ. Genes in the pX region of human T cell leukemia virus I influence Vav phosphorylation in T cells. Proc Natl Acad Sci USA 1998; 95: 1782–7. [Google Scholar]
  27. Chiang YJ, Kole HK, Brown K, et al. Cbl-b regulates the CD28 dependence of Tcell activation. Nature 2000; 403: 216–20. [Google Scholar]
  28. Krawczyk C, Bachmaier K, Sasaki T, et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 2000; 13: 463–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.