Free Access
Issue |
Med Sci (Paris)
Volume 19, Number 2, Février 2003
|
|
---|---|---|
Page(s) | 211 - 216 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2003192211 | |
Published online | 15 February 2003 |
- Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241–69. [Google Scholar]
- Whyte DB, Kirschmeier P, Hockenberry TN, et al. Kand N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997; 272: 14459–64. [Google Scholar]
- Baron R, Fourcade E, Lajoie-Mazenc I, et al. RhoB prenylation is driven by the three carboxylterminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci USA 2000; 97: 11626–31. [Google Scholar]
- Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63: 133–9. [Google Scholar]
- James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260: 1937–42. [Google Scholar]
- Kohl NE, Mosser SD, Desolms SJ, et al. Selective inhibition of Ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–7 [Google Scholar]
- Miquel K, Pradines A, Sun J, et al. GGTI-298 induces G0/G1 block and apoptosis whereas FTI-277 causes G2/M enrichment in A549 cells. Cancer Res 1997; 57: 1846–50. [Google Scholar]
- Vogt A, Sun JZ, Qian YM, Hamilton AD, Sebti SM. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G(0)/G(1) and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 1997; 272: 27224–9. [Google Scholar]
- Lebowitz PF, Sakamuro D, Prendergast GC. Farnesyl transferase inhibitors induce apoptosis of Rastransformed cells denied substratum attachment. Cancer Res 1997; 57: 708–13. [Google Scholar]
- Du W, Liu A, Prendergast GC. Activation of the PI3K-AKT pathway masks the proapoptotic effects of farnesyltransferase inhibitors. Cancer Res 1999; 59: 4208–12. [Google Scholar]
- Jiang K, Coppola D, Crespo NC, et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Biol 2000; 20: 139–48. [Google Scholar]
- Sun JZ, Qian YM, Hamilton AD, Sebti SM. Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res 1995; 55: 4243–7. [Google Scholar]
- Kohl NE, Omer CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1: 792–7. [Google Scholar]
- Barrington RE, Subler MA, Rands E, et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 1998; 18: 85–92. [Google Scholar]
- Prendergast GC, Davide JP, Desolms SJ, et al. Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol 1994; 14: 4193–202. [Google Scholar]
- Sepp-Lorenzino L, Ma ZP, Bands E, et al. Peptidomimetic inhibitor of farnesyl protein transferase blocks the anchoragedependent and -independent growth of human tumor cell lines. Cancer Res 1995; 55: 5302–9. [Google Scholar]
- Lerner EA, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitors in human tumor cell lines. Oncogene 1997; 15: 1283–8. [Google Scholar]
- Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress ras transformation by interfering with rho activity. Mol Cell Biol 1995; 15: 6613–22. [Google Scholar]
- Lebowitz PF, Prendergast GC. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene 1998; 17: 1439–45. [Google Scholar]
- Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 1999; 19: 1831–40. [Google Scholar]
- Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation, induce apoptosis and suppress human tumor growth in nude mice. J Biol Chem 2000; 275: 17974–8. [Google Scholar]
- Johnston SR, Ellis PA, Houston S, et al. A phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced breast cancer. Proc Am Soc Clin Oncol 2000; 20: A318. [Google Scholar]
- Rubin E, Abbruzzese JL, Morrison BW, et al. A phase I trial of the farnesyl transferase inhibitor L- 778123 on a 14 or 28-day dosing schedule. Proc Am Soc Clin Oncol 2000; 20: A689. [Google Scholar]
- Schellens JHM, de Klerk G, Swart M, et al. Phase I and pharmacologic study with the novel farnesyl transferase inhibitor (FTI) R115777. Proc Am Soc Clin Oncol 2000; 20: A715. [Google Scholar]
- Adjei AA, Erlichman C, Davis JN, et al. A phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000; 60: 1871–7. [Google Scholar]
- Ryan DP, Eder JP, Supko JG, et al. Phase I clinical trial of the farnesyl transferase inhibitor BMS-214662 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2000; 20: A720. [Google Scholar]
- Lancet JE, Rosenblatt JD, Liesveld JL, et al. Use of farnesyl transferase inhibitor R115777 in relapsed or refractory acute leukemias: preliminary results of a phase I trial. Proc Am Soc Clin Oncol 2000; 20: A5B. [Google Scholar]
- Hurwitz HI, Amado R, Prager D, et al. Phase I pharmacokinetic trial of the farnesyl transferase inhibitor SCH66336 plus gemcitabine in advanced cancers. Proc Am Soc Clin Oncol 2000; 20: A717. [Google Scholar]
- Bailey HH, Marnocha R, Arzoomanian R, et al. Phase I trial of weekly paclitaxel and BMS214662 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2001; 21: A314. [Google Scholar]
- Britten CD, Rowinsky E, Yao SL, et al. The farnesyl protein transferase (FPTase) inhibitor L-778123 in patients with solid cancers. Proc Am Soc Clin Oncol 1999; 19: A597. [Google Scholar]
- Lantry LE, Zhang Z, Yao R, et al. Effect of farnesyltransferase inhibitor FTI-276 on established lung adenomas from A/J mice induced by 4- (methylnitrosamino)-1-(3- pyridyl)-1-butanone. Carcinogenesis 2000; 21: 113–6. [Google Scholar]
- Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 2001; 276: 16161–7. [Google Scholar]
- Moasser MM, SeppLorenzino L, Kohl NE, et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 1998; 95: 1369–74. [Google Scholar]
- Cohen-Jonathan E, Toulas C, Ader I, et al. The farnesyl transferase inhibitor FTI- 277 suppresses the 24kDa bFGF-induced radioresistance in HeLa cells expressing wild type Ras. Rad Res 1999; 152: 404–11. [Google Scholar]
- Bernhard EJ, McKenna WG, Hamilton AD, et al. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 1998; 58: 1754–61. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.