Free Access
Med Sci (Paris)
Volume 18, Number 10, Octobre 2002
Page(s) 995 - 1002
Section M/S Revues : Dossier Technique
Published online 15 October 2002
  1. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276 : 81–7. [Google Scholar]
  2. Borgens RB. Mice regrow the tips of their foretoes. Science 1982; 217 : 747–50. [Google Scholar]
  3. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995; 77 : 940–56. [Google Scholar]
  4. Damien C, Parsons R. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 1991; 2 : 187–208. [Google Scholar]
  5. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop 1987; 225 : 7–16. [Google Scholar]
  6. Shors EC. Coralline bone graft substitutes. Orthop Clin North Am 1999; 30 : 599–613. [Google Scholar]
  7. Duguy N, Petite H, Arnaud E. Biomaterials and osseous regeneration. Ann Chir Plast Esthet 2000; 45 : 364–76. [Google Scholar]
  8. Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990; 24 : 379–96. [Google Scholar]
  9. Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 1997; 172 : 129–91. [Google Scholar]
  10. Frayssinet P, Fages J, Bonel G, Rouquet N. Biotechnology, material sciences and bone repair. Eur J Orthop Surg Traumatol 1998; 8 : 17–25. [Google Scholar]
  11. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998; 16 : 247–52. [Google Scholar]
  12. Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 2001; 19 : 255–65. [Google Scholar]
  13. Uludag H, D’Augusta D, Palmer R, Timony G, Wozney J. Characterization of rhbmp-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. J Biomed Mater Res 1999; 46 : 193–202. [Google Scholar]
  14. Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 2000; 142 : 9–21. [Google Scholar]
  15. Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 1999; 20 : 1909–18. [Google Scholar]
  16. Toriumi DM, Kotler HS, Luxenberg DP, Holtrop ME, Wang EA. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg 1991; 117 : 1101–12. [Google Scholar]
  17. Gerhart TN, Kirker-Head CA, Kriz MJ, et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993; 293 : 317–26. [Google Scholar]
  18. Winn SR, Hu Y, Sfeir C, Hollinger JO. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev 2000; 42 : 121–38. [Google Scholar]
  19. Musgrave DS, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop 2000; 378 : 290–305. [Google Scholar]
  20. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81 : 905–17. [Google Scholar]
  21. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000; 11 : 1201–10. [Google Scholar]
  22. Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 1999; 90 : 109–14. [Google Scholar]
  23. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000; 92 : 191–6. [Google Scholar]
  24. Okubo Y, Bessho K, Fujimura K, Iizuka T, Miyatake SI. Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem Biophys Res Commun 2000; 267 : 382–7. [Google Scholar]
  25. Musgrave DS, Bosch P, Ghivizzani S, et al. Adenovirus-mediated direct gene therapy with bone morphogenetic protein- 2 produces bone. Bone 1999; 24 : 541–7. [Google Scholar]
  26. Fang J, Zhu YY, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 1996; 93 : 5753–8. [Google Scholar]
  27. Goldstein SA, Bonadio J. Potential role for direct gene transfer in the enhancement of fracture healing. Clin Orthop 1998; 355 (suppl) : S154–62. [Google Scholar]
  28. Johnson EE, Urist MR, Finerman GA. Distal metaphyseal tibial nonunion. Deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (HBMP). Clin Orthop 1990; 250 : 234–40. [Google Scholar]
  29. Johnson EE, Urist MR, Finerman GA. Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin Orthop 1988; 236 : 257–65. [Google Scholar]
  30. Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigenextracted, allogeneic (AAA) bone. Clin Orthop 1992; 280 : 229–37. [Google Scholar]
  31. Helm GA, Alden TD, Sheehan JP, Kallmes D. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery 2000; 46 : 1213–22. [Google Scholar]
  32. Alper J. Boning up: newly isolated proteins heal bad breaks. Science 1994; 263 : 324–5. [Google Scholar]
  33. Dubertret L, Coulomb B. Le modèle de peau équivalente. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Éditions Inserm, 1989 : 91–102. [Google Scholar]
  34. Reach G. Pancréas bioartificiel: définition des objectifs et réalisations techniques. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Éditions Inserm, 1989 : 191–207. [Google Scholar]
  35. Guillouzo A, Gripon P, Guyomard C, et al. Culture d’hépatocytes isolés: utilisation comme modèle alternatif ou substitut fonctionnel. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Inserm, 1989 : 247–55. [Google Scholar]
  36. Petite H. Thérapie cellulaire des grandes pertes de substance osseuse. Med Sci 2001; 17 : 128–30. [Google Scholar]
  37. Goshima J, Goldberg VM, Caplan AI. Osteogenic potential of cultureexpanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 1991; 12 : 253–8. [Google Scholar]
  38. Kadiyala S, Jaiswal N, Bruder S. Culture-expanded bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Engin 1997; 3 : 173–85. [Google Scholar]
  39. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16 : 155–62. [Google Scholar]
  40. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49 : 328–37. [Google Scholar]
  41. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998; 80 : 985–96. [Google Scholar]
  42. Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18 : 959–63. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.