Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 10, Octobre 2002
Page(s) 995 - 1002
Section M/S Revues : Dossier Technique
DOI https://doi.org/10.1051/medsci/20021810995
Publié en ligne 15 octobre 2002
  1. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276 : 81–7.
  2. Borgens RB. Mice regrow the tips of their foretoes. Science 1982; 217 : 747–50.
  3. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995; 77 : 940–56.
  4. Damien C, Parsons R. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 1991; 2 : 187–208.
  5. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop 1987; 225 : 7–16.
  6. Shors EC. Coralline bone graft substitutes. Orthop Clin North Am 1999; 30 : 599–613.
  7. Duguy N, Petite H, Arnaud E. Biomaterials and osseous regeneration. Ann Chir Plast Esthet 2000; 45 : 364–76.
  8. Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990; 24 : 379–96.
  9. Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 1997; 172 : 129–91.
  10. Frayssinet P, Fages J, Bonel G, Rouquet N. Biotechnology, material sciences and bone repair. Eur J Orthop Surg Traumatol 1998; 8 : 17–25.
  11. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998; 16 : 247–52.
  12. Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 2001; 19 : 255–65.
  13. Uludag H, D’Augusta D, Palmer R, Timony G, Wozney J. Characterization of rhbmp-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. J Biomed Mater Res 1999; 46 : 193–202.
  14. Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 2000; 142 : 9–21.
  15. Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 1999; 20 : 1909–18.
  16. Toriumi DM, Kotler HS, Luxenberg DP, Holtrop ME, Wang EA. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg 1991; 117 : 1101–12.
  17. Gerhart TN, Kirker-Head CA, Kriz MJ, et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993; 293 : 317–26.
  18. Winn SR, Hu Y, Sfeir C, Hollinger JO. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev 2000; 42 : 121–38.
  19. Musgrave DS, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop 2000; 378 : 290–305.
  20. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81 : 905–17.
  21. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000; 11 : 1201–10.
  22. Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 1999; 90 : 109–14.
  23. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000; 92 : 191–6.
  24. Okubo Y, Bessho K, Fujimura K, Iizuka T, Miyatake SI. Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem Biophys Res Commun 2000; 267 : 382–7.
  25. Musgrave DS, Bosch P, Ghivizzani S, et al. Adenovirus-mediated direct gene therapy with bone morphogenetic protein- 2 produces bone. Bone 1999; 24 : 541–7.
  26. Fang J, Zhu YY, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 1996; 93 : 5753–8.
  27. Goldstein SA, Bonadio J. Potential role for direct gene transfer in the enhancement of fracture healing. Clin Orthop 1998; 355 (suppl) : S154–62.
  28. Johnson EE, Urist MR, Finerman GA. Distal metaphyseal tibial nonunion. Deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (HBMP). Clin Orthop 1990; 250 : 234–40.
  29. Johnson EE, Urist MR, Finerman GA. Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin Orthop 1988; 236 : 257–65.
  30. Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigenextracted, allogeneic (AAA) bone. Clin Orthop 1992; 280 : 229–37.
  31. Helm GA, Alden TD, Sheehan JP, Kallmes D. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery 2000; 46 : 1213–22.
  32. Alper J. Boning up: newly isolated proteins heal bad breaks. Science 1994; 263 : 324–5.
  33. Dubertret L, Coulomb B. Le modèle de peau équivalente. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Éditions Inserm, 1989 : 91–102.
  34. Reach G. Pancréas bioartificiel: définition des objectifs et réalisations techniques. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Éditions Inserm, 1989 : 191–207.
  35. Guillouzo A, Gripon P, Guyomard C, et al. Culture d’hépatocytes isolés: utilisation comme modèle alternatif ou substitut fonctionnel. In : Baquey C, Dupuy B, eds. Organes artificiels hybrides. Paris : Inserm, 1989 : 247–55.
  36. Petite H. Thérapie cellulaire des grandes pertes de substance osseuse. Med Sci 2001; 17 : 128–30.
  37. Goshima J, Goldberg VM, Caplan AI. Osteogenic potential of cultureexpanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 1991; 12 : 253–8.
  38. Kadiyala S, Jaiswal N, Bruder S. Culture-expanded bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Engin 1997; 3 : 173–85.
  39. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16 : 155–62.
  40. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49 : 328–37.
  41. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998; 80 : 985–96.
  42. Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18 : 959–63.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.