Free Access
Issue
Med Sci (Paris)
Volume 18, Number 4, Avril 2002
Page(s) 457 - 466
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/2002184457
Published online 15 April 2002
  1. Agid Y, Ruberg M, Raisman-Vozari R, Hirsch EC, Javoy-Agid F. The biochemistry of Parkinson’s disease. In: Stern GM, ed. Parkinson’s disease. London : Chapman and Hall, 1990: 99–125. [Google Scholar]
  2. Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP : contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001; 65 : 135–72. [Google Scholar]
  3. Gerlach M, Riederer P. Animal models of Parkinson’s disease : an empirical comparison with the phenomenology of the disease in man. J Neural Transm 1996; 103 : 987–1041. [Google Scholar]
  4. Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MB. Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease.J Neural Transm 1995; 46 (suppl) : 297–314. [Google Scholar]
  5. Rocha ME, Ferreira AM, Bechara EJ. Roles of phosphate and an enoyl radical in ferritin iron mobilization by 5-aminolevulinic acid. Free Radic Biol Med 2000; 29 : 1272–9. [Google Scholar]
  6. Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RK. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 1993; 18 : 1175–7. [Google Scholar]
  7. Asanuma M, Hirata H, Cadet JL. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice. Neuroscience 1998; 85 : 907–17. [Google Scholar]
  8. Bensadoun JC, Mirochnitchenko O, Inouye M, Aebischer P, Zurn AD. Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci 1998; 10 : 3231–6. [Google Scholar]
  9. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14 : 644–53. [Google Scholar]
  10. Glinka YY, Youdim MB. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 1995; 292 : 329–32. [Google Scholar]
  11. Kumar R, Agarwal ML, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 1995; 64 : 1703–7. [Google Scholar]
  12. Bruchelt G, Schraufstatter IU, Niethammer D, Cochrane CG. Ascorbic acid enhances the effects of 6-hydroxydopamine and H2O2 on iron-dependent DNA strand breaks and related processes in the neuroblastoma cell line SK-N-SH. Cancer Res 1991; 51 : 6066–72. [Google Scholar]
  13. Brouillet E, Peschanski M, Hantraye P. Du gène à la maladie : la mort neuronale dans la maladie de Huntington. Med Sci 2000; 16 : 57–63. [Google Scholar]
  14. Davis GC, Williams AC, Markey S P, et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatr Res 1979; 1 : 249–54. [Google Scholar]
  15. Przedborski S, Jackson-Lewis V, Naini AB, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) : a technical review of its utilility and safety. J Neurochem 2001; 76 : 1265–74. [Google Scholar]
  16. Varastet M, Riche D, Maziere M, Hantraye P. Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience 1994; 63 : 47–56. [Google Scholar]
  17. D’Amato RJ, Alexander GM, Schwartzman RJ, Kitt CA, Price DL, Snyder SH. Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 1987; 327 : 324–6. [Google Scholar]
  18. Staal RG, Sonsalla PK. Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther 2000; 293 : 336–42. [Google Scholar]
  19. Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13 (suppl 1) : 35–8. [Google Scholar]
  20. Klivenyi P, Andreassen OA, Ferrante RJ, et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci 2000; 20 : 1–7. [Google Scholar]
  21. Zhang J, Graham DG, Montine TJ, Ho YS. Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in Cu/Znsuperoxide dismutase or glutathione peroxidase. J Neuropathol Exp Neurol 2000; 59 : 53–61. [Google Scholar]
  22. Hantraye P, Brouillet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 1996; 2 : 1017–21. [Google Scholar]
  23. Lotharius J, Dugan LL, O’Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 1999; 19 : 1284–93. [Google Scholar]
  24. Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1999; 1453 : 49–62. [Google Scholar]
  25. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000; 407 : 802–9. [Google Scholar]
  26. Leist M, Volbracht C, Fava E, Nicotera P. 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Mol Pharmacol 1998; 54 : 789–801. [Google Scholar]
  27. Dodel RC, Du Y, Bales KR, Ling Z, Carvey PM, Paul SM. Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res 1999; 64 : 141–8. [Google Scholar]
  28. Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM. Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 1997; 69 : 1382–8. [Google Scholar]
  29. Ochu EE, Rothwell NJ, Waters CM. Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem. 1998; 70 : 2637–40. [Google Scholar]
  30. Hartmann A, Troadec JD, Hunot S, et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21 : 2247–55. [Google Scholar]
  31. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 2000; 60 (suppl) : 277–90. [Google Scholar]
  32. Crocker SJ, Wigle N, Liston P, et al. NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson’s disease. Eur J Neurosci 2001; 14 : 391–400. [Google Scholar]
  33. Eberhardt O, Coelln RV, Kugler S, et al. Protection by synergistic effects of adenovirus-mediated Xchromosome- linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 2000; 20 : 9126–34. [Google Scholar]
  34. von Coelln R, Kugler S, Bahr M, Weller M, Dichgans J, Schulz JB. Rescue from death but not from functional impairment : caspase inhibition protects dopaminergic cells against 6-hydroxydopamineinduced apoptosis but not against the loss of their terminals. J Neurochem 2001; 77 : 263–73. [Google Scholar]
  35. Blum D, Wu Y, Nissou MF, Arnaud S, Alim LB, Verna JM. p53 and Bax activation in 6-hydroxydopamineinduced apoptosis in PC12 cells. Brain Res 1997; 751 : 139–42. [Google Scholar]
  36. Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 1998; 54 : 1046–54. [Google Scholar]
  37. Trimmer PA, Smith TS, Jung AB, Bennett JP Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 1996; 5 : 233–9. [Google Scholar]
  38. Tieu K, Zuo DM, Yu PH. Differential effects of staurosporine and retinoic acid on the vulnerability of the SH-SY5Y neuroblastoma cells : involvement of bcl-2 and p53 proteins. J Neurosci Res1999; 58 : 426–35. [Google Scholar]
  39. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6 : 513–9. [Google Scholar]
  40. Blum D, Torch S, Nissou MF, Verna JM. 6-hydroxydopamine-induced nuclear factor-kappa B activation in PC12 cells. Biochem Pharmacol 2001; 62 : 473–81. [Google Scholar]
  41. Cassarino DS, Halvorsen EM, Swerdlow RH, et al. Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease.J Neurochem 2000; 74 : 1384–92. [Google Scholar]
  42. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 1999; 18 : 6910–24. [Google Scholar]
  43. Choi WS, Yoon SY, Chang II, et al. Correlation between structure of Bcl-2 and its inhibitory function on JNK and caspase activity in dopaminergic neuronal apoptosis. J Neurochem2000; 74 : 1621–6. [Google Scholar]
  44. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 2001; 98 : 10433–8. [Google Scholar]
  45. Kulich SM, Chu CT. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine : implications for Parkinson’s disease. J Neurochem2001; 77 : 1058–66. [Google Scholar]
  46. Turmel H, Hartmann A, Parain K, et al. Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Mov Disord 2001; 16 : 185–9. [Google Scholar]
  47. Jeon BS, Kholodilov NG, Oo TF, et al. Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J Neurochem 1999; 73 : 322–33. [Google Scholar]
  48. Vila M, Jackson-Lewis V, Vukosavic S, et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 2001; 98 : 2837–42. [Google Scholar]
  49. Offen D, Beart PM, Cheung NS, et al. Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 1998; 95 : 5789–94. [Google Scholar]
  50. Hochman A, Sternin H, Gorodin S, et al. Enhanced oxidative stress and altered antioxidants in brains of Bcl-2- deficient mice. J Neurochem 1998; 71 : 741–8. [Google Scholar]
  51. Saporito MS, Thomas BA, Scott RW. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 2000; 75 : 1200–8. [Google Scholar]
  52. Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997; 94 : 7531–6. [Google Scholar]
  53. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990; 249 : 1436–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.