Free Access
Med Sci (Paris)
Volume 18, Number 4, Avril 2002
Page(s) 439 - 447
Section M/S Revues : Articles de Synthèse
Published online 15 April 2002
  1. Cossart P, Boquet P, Normark S, Falkow S. Cellular microbiology emerging. Science 1996; 271 : 315–6. [Google Scholar]
  2. Wandersman C. Secretion across the bacterial outer membrane. In: Neidhardt C, ed. Escherichia coli and Salmonella: cellular and molecular microbiology. Washington, DC: ASM Press, 1996 : 955–66. [Google Scholar]
  3. Hobbs M, Mattick JS. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phages and proteinsecretion apparatus: a general system for the formation of surfaceassociated protein complexes. Mol Microbiol 1993; 10 : 233–43. [Google Scholar]
  4. Hueck CJ. Type III secretion systems in bacterial pathogens of animals and plants. Microbiol Rev 1998; 62 : 379–433. [Google Scholar]
  5. Anderson DM, Schneewind O. Type III secretion of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr Opin Microbiol 1999; 2 : 18–24. [Google Scholar]
  6. Christie PJ, Covacci A. Bacterial type IV secretion systems: DNA conjugation machines adapted for export of virulence factors. In: Cossart P, Boquet P, Normark S, Rappuoli R. eds. Cellular microbiology. Washington DC: ASM Press, 2000 : 265–73. [Google Scholar]
  7. Christie PJ, Vogel JP. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 2000; 8 : 354–60. [Google Scholar]
  8. Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann Rev Genet 1998; 22 : 1–30. [Google Scholar]
  9. Christie PJ. The Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 1997; 179 : 3085–94. [Google Scholar]
  10. Weiss AA, Johnson FD, Burns DL. Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 1993; 90 : 2970–4. [Google Scholar]
  11. Covacci, A, Rappuoli R. Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol Microbiol 1993; 8 : 429–34. [Google Scholar]
  12. Scarlato V, Ariço B, Domenighini M, Rappuoli R. Environmental regulation of virulence factor in Bordetella species. Bioassays 1993; 15 : 99–104. [Google Scholar]
  13. Akopyants NS, Clifton SW, Kersulyte D, et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28 : 37–53. [Google Scholar]
  14. Covacci A, Telford JL, Del Guidice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science 1999; 284 : 1328–33. [Google Scholar]
  15. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvment of the phosphorylated CagA in the induction of the host cellular growthchanges by Helicobacter pylori. Proc Natl Acad Sci USA 1999; 96 : 14559–64. [Google Scholar]
  16. Stein M, Rappuoli R, Covacci A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 2000; 97 : 1263–8. [Google Scholar]
  17. Odenbreit S, Pull J, Sedlmaier B, Gerland E, Fisher W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287 : 1497–500. [Google Scholar]
  18. Hofreuter D, Odenbreit S, Puls J, Schwan D, Haas R. Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res Microbiol 2000; 151 : 487–91. [Google Scholar]
  19. Vogel JP, Andrews HL, Wong SK, Isberg RR. Conjugative transfer by the virulence system of Legionella pneumophila. Science 1998; 279 : 873–6. [Google Scholar]
  20. Segal G, Russo JJ, Shuman HA. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 1999; 34 : 799–809. [Google Scholar]
  21. Porte F, Liautard JP, Köhler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 1999; 67 : 4041–7. [Google Scholar]
  22. Pizarro-Cerda J, Meresse S, Parton RG, et al. Brucella abortus transits through the autophagocytic pathway and replicates in the endoplasmic reticulum of nonprofessionnal phagocytes. Infect Immun 1998; 66 : 5711–24. [Google Scholar]
  23. Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive inhibitor of TNF-alpha expression, active on human macrophage-like cells. J Immunol 1996; 156 : 2885–93. [Google Scholar]
  24. Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 2000; 68 : 342–51. [Google Scholar]
  25. Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O’Callaghan D. Identification of Brucella suis gene affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000; 68 : 1297–303. [Google Scholar]
  26. O’Callaghan D, Cazevieille C, Allardet-Servent A, et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 1999; 33 : 1210–20. [Google Scholar]
  27. Sierra R, Comerci DJ, Sanchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 2000; 182 : 4849–55. [Google Scholar]
  28. Burns DL. Biochemistery of type IV secretion. Curr Opin Microbiol 1999; 2 : 25–9. [Google Scholar]
  29. Beijersbergen A, Smith SJ, Hooykass PJJ. Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 1994; 32 : 212–8. [Google Scholar]
  30. Lai EM, Kado CI. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 2000; 8 : 361–9. [Google Scholar]
  31. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C. Vir proteins stabilize VirB5 and mediates its association with the Tpilus of Agrobacterium tumefaciens. J Bacteriol 1999; 181 : 7485–92. [Google Scholar]
  32. Baron C, Llosa M, Zhou S, Zambryski PC. VirB1, a component of the Tcomplex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J Bacteriol 1997; 179 : 1203–10. [Google Scholar]
  33. Spudich GM, Fernadez D, Zhou ZR, Christie PJ. Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 1996; 93 : 7512–7. [Google Scholar]
  34. Heinemann J. Genetic evidence of protein transfer during bacterial conjugation. Plasmid 1999; 41 : 240–7. [Google Scholar]
  35. Citovsky V, Zupan J, Warnick D, Zambryski PC. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 1992; 256 : 1802–5. [Google Scholar]
  36. Regensburg-Tuink AJG, Hooykass PJJ. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 1993; 363 : 69–71. [Google Scholar]
  37. Stahl LE, Jacobs A, Binns AN. The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. J Bacteriol 1998; 180 : 3933–9. [Google Scholar]
  38. Deng W, Cheng L, Peng WT, et al. VirE1 is a specific molecular chaperone for the exported single stranted DNA binding protein VirE2 in Agrobacterium. Mol Microbiol 1999; 31 : 1795–807. [Google Scholar]
  39. Winans SC, Burns DL, Christie PJ. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol 1996; 4 : 64–8. [Google Scholar]
  40. Planet PJ, Kachlany SC, De Salle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 2001; 98 : 2503–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.