Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 4, Avril 2002
Page(s) 439 - 447
Section M/S Revues : Articles de Synthèse
Publié en ligne 15 avril 2002
  1. Cossart P, Boquet P, Normark S, Falkow S. Cellular microbiology emerging. Science 1996; 271 : 315–6.
  2. Wandersman C. Secretion across the bacterial outer membrane. In: Neidhardt C, ed. Escherichia coli and Salmonella: cellular and molecular microbiology. Washington, DC: ASM Press, 1996 : 955–66.
  3. Hobbs M, Mattick JS. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phages and proteinsecretion apparatus: a general system for the formation of surfaceassociated protein complexes. Mol Microbiol 1993; 10 : 233–43.
  4. Hueck CJ. Type III secretion systems in bacterial pathogens of animals and plants. Microbiol Rev 1998; 62 : 379–433.
  5. Anderson DM, Schneewind O. Type III secretion of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr Opin Microbiol 1999; 2 : 18–24.
  6. Christie PJ, Covacci A. Bacterial type IV secretion systems: DNA conjugation machines adapted for export of virulence factors. In: Cossart P, Boquet P, Normark S, Rappuoli R. eds. Cellular microbiology. Washington DC: ASM Press, 2000 : 265–73.
  7. Christie PJ, Vogel JP. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 2000; 8 : 354–60.
  8. Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann Rev Genet 1998; 22 : 1–30.
  9. Christie PJ. The Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 1997; 179 : 3085–94.
  10. Weiss AA, Johnson FD, Burns DL. Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 1993; 90 : 2970–4.
  11. Covacci, A, Rappuoli R. Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol Microbiol 1993; 8 : 429–34.
  12. Scarlato V, Ariço B, Domenighini M, Rappuoli R. Environmental regulation of virulence factor in Bordetella species. Bioassays 1993; 15 : 99–104.
  13. Akopyants NS, Clifton SW, Kersulyte D, et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28 : 37–53.
  14. Covacci A, Telford JL, Del Guidice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science 1999; 284 : 1328–33.
  15. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvment of the phosphorylated CagA in the induction of the host cellular growthchanges by Helicobacter pylori. Proc Natl Acad Sci USA 1999; 96 : 14559–64.
  16. Stein M, Rappuoli R, Covacci A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 2000; 97 : 1263–8.
  17. Odenbreit S, Pull J, Sedlmaier B, Gerland E, Fisher W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287 : 1497–500.
  18. Hofreuter D, Odenbreit S, Puls J, Schwan D, Haas R. Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res Microbiol 2000; 151 : 487–91.
  19. Vogel JP, Andrews HL, Wong SK, Isberg RR. Conjugative transfer by the virulence system of Legionella pneumophila. Science 1998; 279 : 873–6.
  20. Segal G, Russo JJ, Shuman HA. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 1999; 34 : 799–809.
  21. Porte F, Liautard JP, Köhler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 1999; 67 : 4041–7.
  22. Pizarro-Cerda J, Meresse S, Parton RG, et al. Brucella abortus transits through the autophagocytic pathway and replicates in the endoplasmic reticulum of nonprofessionnal phagocytes. Infect Immun 1998; 66 : 5711–24.
  23. Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive inhibitor of TNF-alpha expression, active on human macrophage-like cells. J Immunol 1996; 156 : 2885–93.
  24. Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 2000; 68 : 342–51.
  25. Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O’Callaghan D. Identification of Brucella suis gene affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000; 68 : 1297–303.
  26. O’Callaghan D, Cazevieille C, Allardet-Servent A, et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 1999; 33 : 1210–20.
  27. Sierra R, Comerci DJ, Sanchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 2000; 182 : 4849–55.
  28. Burns DL. Biochemistery of type IV secretion. Curr Opin Microbiol 1999; 2 : 25–9.
  29. Beijersbergen A, Smith SJ, Hooykass PJJ. Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 1994; 32 : 212–8.
  30. Lai EM, Kado CI. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 2000; 8 : 361–9.
  31. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C. Vir proteins stabilize VirB5 and mediates its association with the Tpilus of Agrobacterium tumefaciens. J Bacteriol 1999; 181 : 7485–92.
  32. Baron C, Llosa M, Zhou S, Zambryski PC. VirB1, a component of the Tcomplex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J Bacteriol 1997; 179 : 1203–10.
  33. Spudich GM, Fernadez D, Zhou ZR, Christie PJ. Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 1996; 93 : 7512–7.
  34. Heinemann J. Genetic evidence of protein transfer during bacterial conjugation. Plasmid 1999; 41 : 240–7.
  35. Citovsky V, Zupan J, Warnick D, Zambryski PC. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 1992; 256 : 1802–5.
  36. Regensburg-Tuink AJG, Hooykass PJJ. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 1993; 363 : 69–71.
  37. Stahl LE, Jacobs A, Binns AN. The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. J Bacteriol 1998; 180 : 3933–9.
  38. Deng W, Cheng L, Peng WT, et al. VirE1 is a specific molecular chaperone for the exported single stranted DNA binding protein VirE2 in Agrobacterium. Mol Microbiol 1999; 31 : 1795–807.
  39. Winans SC, Burns DL, Christie PJ. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol 1996; 4 : 64–8.
  40. Planet PJ, Kachlany SC, De Salle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 2001; 98 : 2503–8.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.