Free Access
Issue
Med Sci (Paris)
Volume 18, Number 2, Février 2002
Page(s) 210 - 216
Section M/S Revues : Mini-Synthèses
DOI https://doi.org/10.1051/medsci/2002182210
Published online 15 February 2002
  1. Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10 : 2657–83. [Google Scholar]
  2. Douziech M, Coin F, Chipoulet JM, et al. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photocross-linking. Mol Cel Biol 2000; 20 : 8168–77. [Google Scholar]
  3. Holstege FC, Fiedler U, Timmers HT. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J 1997; 16 : 7468–80. [Google Scholar]
  4. Conaway JW, Shilatifard A, Dvir A, Conaway RC. Control of elongation by RNA polymerase II. Trends Biochem Sci 2000; 25 : 375–80. [Google Scholar]
  5. Coulombe B, Burton ZF. DNA bending and wrapping around RNA polymerase: a «revolutionary» model describing transcriptional mechanisms. Microbiol Mol Biol Rev 1999; 63 : 457–78. [Google Scholar]
  6. Awrey DE, Weilbaecher RG, Hemming SA, Orlicky SM, Kane CM, Edwards AM. Transcription elongation through DNA arrest sites. J Biol Chem 1997; 272 : 14747–54. [Google Scholar]
  7. Maillet I, Buhler JM, Sentenac A, Labarre J. Rpb4p is necessary for RNA polymerase II activity at high temperature. J Biol Chem 1999; 274 : 22586–90. [Google Scholar]
  8. Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 A resolution. Science 2001; 292 : 1863–76. [Google Scholar]
  9. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001; 292 : 1876–82. [Google Scholar]
  10. Poglitsch CL, Meredith GD, Gnatt A, et al. Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 1999; 98 : 791–8. [Google Scholar]
  11. Fu J, Gnatt AL, Bushnell DA, et al. Yeast RNA polymerase II at 5 A resolution. Cell 1999; 98 : 799–810. [Google Scholar]
  12. Cramer P, Bushnell DA, Fu J, et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 2000; 288 : 640–9. [Google Scholar]
  13. Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 1997; 89 : 33–41. [Google Scholar]
  14. Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 1999; 98 : 811–24. [Google Scholar]
  15. Cho EJ, Takagi T, Moore CR, Buratowski S. mRNA cap-ping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 1997; 11 : 3319–26. [Google Scholar]
  16. McCracken S, Fong N, Rosonina E, et al. 5’-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 1997; 11 : 3306–18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.