Free Access
Issue
Med Sci (Paris)
Volume 17, Number 11, Novembre 2001
Page(s) 1195 - 1200
Section Nouvelles
DOI https://doi.org/10.1051/medsci/200117111195
Published online 15 November 2001
  1. Brown DD, Wang Z, Furlow JD, et al. The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc Natl Acad Sci USA 1996; 93 : 1924–9. [Google Scholar]
  2. Wang Z, Brown DD. A gene expression screen. Proc Natl Acad Sci USA, 1991; 88 : 11505–9. [Google Scholar]
  3. Chassande O, Flamant F, Samarut J. Thyroid hormone receptor knock out : their contribution to our understanding of thyroid hormone resistance. Curr Opin Endocrinol Diabetes 1999; 6 : 293–300. [Google Scholar]
  4. Murata E, Akita M, Kaneko K, Merker HJ. Changes associated with the basal lamina during metamorphosis of Xenopus laevis. Acta Anat 1994; 150 : 178–85. [Google Scholar]
  5. Elinson RP, Remo B, Brown DD. Novel structural elements identified during tail resorption in Xenopus laevis metamorphosis : lessons from tailed frogs. Dev Biol 1999; 215 : 243–52. [Google Scholar]
  6. Gross J. How tadpoles lose their tails. J Invest Dermatol 1966; 47 : 274–7. [Google Scholar]
  7. Stolow MA, Bauzon DD, Li J, et al. Identification and characterization of a novel collagenase in Xenopus laevis : possible roles during frog development. Mol Biol Cell 1996; 7 :1471–83. [Google Scholar]
  8. Patterton D, Hayes WP, Shi YB. Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis. Dev Biol 1995; 167 : 252–62. [Google Scholar]
  9. Berry DL, Schwartzman RA, Brown DD. The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs. Dev Biol 1998; 203 : 12–23. [Google Scholar]
  10. Wang Z, Brown DD. Thyroid hormone-induced gene expression program for amphibian tail resorption. J Biol Chem 1993; 268 : 16270–8. [Google Scholar]
  11. Li J, Liang VC, Sedgwick T, Wong J, Shi YB. Unique organization and involvement of GAGA factors in transcriptional regulation of the Xenopus stromelysin-3 gene. Nucleic Acids Res 1998; 26 : 3018–25. [Google Scholar]
  12. Ludwig MG, Basset P, Anglard P. Multiple regulatory elements in the murine stromelysin-3 promoter. J Biol Chem 2000; 275 : 39981–90. [Google Scholar]
  13. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem 1996; 271 : 544–50. [Google Scholar]
  14. Noel A, Santavicca M, Stoll I, et al. Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J Biol Chem 1995; 270 : 22866–72. [Google Scholar]
  15. Ishizuya-Oka A, Li Q, Amano T, Damjanovski S, Ueda S, Shi YB. Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol 2000; 150 : 1177–88. [Google Scholar]
  16. Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol 2000; 14 : 947–55. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.