Accès gratuit
Numéro
Med Sci (Paris)
Volume 41, Numéro 5, Mai 2025
Enjeux et objectifs de la psychiatrie de précision
Page(s) 443 - 450
Section La psychiatrie de précision (PEPR PROPSY) : hypothèses et outils
DOI https://doi.org/10.1051/medsci/2025075
Publié en ligne 26 mai 2025
  1. Canas JJ, Fajardo I, Salmeron L. Cognitive flexibility. Int Encycl Ergon Human Fact 2006 ; 1 : 297–301. [Google Scholar]
  2. Davis JC, Marra CA, Najafzadeh M, et al. The independent contribution of executive functions to health related quality of life in older women. BMC Geriatr 2010 ; 10 : 16. [CrossRef] [PubMed] [Google Scholar]
  3. Hemi A, Sopp MR, Bonanno G, et al. Flexibility predicts chronic anxiety and depression during the first year of the COVID-19 pandemic-A longitudinal investigation of mental health trajectories. Psychol Trauma 2024 ; 16 : 961–70. [CrossRef] [PubMed] [Google Scholar]
  4. Zheng W, Akaliyski P, Ma C, et al. Cognitive flexibility and academic performance: individual and cross-national patterns among adolescents in 57 countries. Pers Indiv Differ 2024 ; 217 : 112455. [CrossRef] [Google Scholar]
  5. Diamond A. Executive functions. Annu Rev Psychol 2013 ; 64 : 135–68. [CrossRef] [PubMed] [Google Scholar]
  6. Miyake A, Friedman NP, Emerson MJ, et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 2000 ; 41 : 49–100. [CrossRef] [PubMed] [Google Scholar]
  7. Miyake A, Friedman NP. The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci 2012 ; 21 : 8–14. [CrossRef] [PubMed] [Google Scholar]
  8. Baggetta P, Alexander PA. Conceptualization and operationalization of executive function. Mind Brain Educ 2016 ; 10 : 10–33. [CrossRef] [Google Scholar]
  9. Lezak MD. Neuropsychological assessment. Oxford : Oxford University Press, 2004. [Google Scholar]
  10. Karr JE, Areshenkoff CN, Rast P, et al. The unity and diversity of executive functions: a systematic review and re-analysis of latent variable studies. Psychol Bull 2018 ; 144 : 1147–83. [CrossRef] [PubMed] [Google Scholar]
  11. Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010 ; 167 : 748–51. [CrossRef] [PubMed] [Google Scholar]
  12. Lavigne KM, Deng J, Raucher-Chéné D, et al. Transdiagnostic cognitive biases in psychiatric disorders: a systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024 ; 129 : 110894. [CrossRef] [PubMed] [Google Scholar]
  13. Abramovitch A, Short T, Schweiger A. The C factor: cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev 2021 ; 86 : 102007. [CrossRef] [PubMed] [Google Scholar]
  14. Caspi A, Moffitt TE. All for one and one for all: mental disorders in one dimension. Am J Psychiatry 2018 ; 175 : 831–44. [CrossRef] [PubMed] [Google Scholar]
  15. Abramovitch A, Short T, Schweiger A, et al. The C factor: cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev 2021 ; 86 : 102007. [CrossRef] [PubMed] [Google Scholar]
  16. Gosling CJ, Cartigny A, Stevanovic D, et al. Known-groups and convergent validity of the theory of mind task battery in children with autism spectrum disorder. Br J Clin Psychol 2023 ; 62 : 525–35. [CrossRef] [PubMed] [Google Scholar]
  17. Luciana M, Collins PF. Executive function in psychiatric disorders. Neuropsychol Rev 2022. [Google Scholar]
  18. Dajani DR, Uddin LQ. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci 2015 ; 38 : 571–8. [CrossRef] [PubMed] [Google Scholar]
  19. Uddin LQ. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat Rev Neurosci 2021 ; 22 : 167–79. [CrossRef] [PubMed] [Google Scholar]
  20. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation, and clinical implications. Philos Trans R Soc B 2007 ; 362 : 917–32. [CrossRef] [PubMed] [Google Scholar]
  21. Izquierdo A, Brigman JL, Radke AK, et al. The neural basis of reversal learning: An updated perspective. Neuroscience 2017 ; 345 : 12–26. [CrossRef] [PubMed] [Google Scholar]
  22. Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024 ; 112 : 893–908. [CrossRef] [PubMed] [Google Scholar]
  23. Sheynikhovich D, et al. Dopamine and model-based flexibilty in Parkinson’s disease. Brain 2013. [Google Scholar]
  24. Cools R, Clark L, Owen AM, Robbins TW. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 2003 ; 23 : 4563–7. [Google Scholar]
  25. Prado VF, Janickova H, Al-Onaizi MA, et al. Cholinergic circuits in cognitive flexibility. Neuroscience 2017 ; 345 : 130–41. [CrossRef] [PubMed] [Google Scholar]
  26. Bell T, Lindner M, Langdon A, et al. Regional striatal cholinergic involvement in human behavioral flexibility. J Neurosci 2019 ; 39 : 5740–9. [CrossRef] [PubMed] [Google Scholar]
  27. Wang Y, Hu X, Li Y. Investigating cognitive flexibility deficit in schizophrenia using task-based whole-brain functional connectivity. Front Psychiatry 2022 ; 13 : 1069036. [CrossRef] [PubMed] [Google Scholar]
  28. Hohl K, Dolcos S. Measuring cognitive flexibility: a brief review of neuropsychological, self-report, and neuroscientific approaches. Front Hum Neurosci 2024 ; 18 : 1331960. [CrossRef] [PubMed] [Google Scholar]
  29. Howlett CA, Wewege MA, Berryman C, et al. Same room - different windows ? A systematic review and meta-analysis of the relationship between self-report and neuropsychological tests of cognitive flexibility in healthy adults. Clin Psychol Rev 2021 ; 88 : 102061. [CrossRef] [PubMed] [Google Scholar]
  30. Howlett CA, Miles S, Berryman C, et al. Conflation between self-report and neurocognitive assessments of cognitive flexibility: a critical review of the Jingle Fallacy. Austr J Psychol 2023 ; 75 : 2174684. [CrossRef] [Google Scholar]
  31. Zühlsdorff M, Busch M, Meyer L, et al. Neural dynamics of cognitive flexibility: insights from fMRI and EEG. Brain Res 2023 ; 1801 : 148056. [Google Scholar]
  32. Hassani OK, Crombie D, Beninger RJ. Dopamine D2 receptor blockade impairs set-shifting, a form of cognitive flexibility, in rats. Behav Brain Res 2016 ; 311 : 172–80. [Google Scholar]
  33. Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology 2013 ; 64 : 168–84. [CrossRef] [PubMed] [Google Scholar]
  34. Figeys M, Cossette A, Cloutier AM, et al. The impact of cognitive remediation on social functioning in people with severe mental illness: a systematic review. Psychiatry Res 2022 ; 316 : 114733. [CrossRef] [PubMed] [Google Scholar]
  35. Witt K, Pulkowski U, Herzog J, et al. Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 2004 ; 61 : 697–700. [CrossRef] [PubMed] [Google Scholar]
  36. Eack SM, Greenwald DP, Hogarty SS, et al. Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatr Serv 2009 ; 60 : 1468–76. [CrossRef] [PubMed] [Google Scholar]
  37. Eack SM, Hogarty SS, Greenwald DP, et al. Cognitive enhancement therapy for adult autism spectrum disorder: results of an 18-month randomized clinical trial. Autism Res 2018 ; 11 : 519–30. [CrossRef] [PubMed] [Google Scholar]
  38. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008 ; 9 : 58–65. [CrossRef] [PubMed] [Google Scholar]
  39. Voss MW, Nagamatsu LS, Liu-Ambrose T, et al. Exercise, brain, and cognition across the lifespan. J Appl Physiol 2011 ; 111 : 1505–13. [CrossRef] [PubMed] [Google Scholar]
  40. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997 ; 386 : 493–5. [CrossRef] [PubMed] [Google Scholar]
  41. van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci 2000 ; 1 : 191–8. [CrossRef] [PubMed] [Google Scholar]
  42. Grant JE, Chamberlain SR. Impaired cognitive flexibility across psychiatric disorders. CNS Spectrums 2023 ; 28 : 688–92. [CrossRef] [PubMed] [Google Scholar]
  43. Sandberg MA. Cambridge neuropsychological testing automated battery. In : Kreutzer JS, DeLuca J, Caplan B, eds. Encyclopedia of Clinical Neuropsychology. Springer, 2011. [Google Scholar]
  44. Wechsler D. Wechsler. Adult intelligence scale, 4th ed (WAIS-IV) (database record). APA : PsycTests, 2008. [Google Scholar]
  45. Delis DC, Kramer JH, Kaplan E, et al. California verbal learning test, 2nd ed. Adult version. Manual. Psychological Corporation, 2000. [Google Scholar]
  46. Fan J, McCandliss BD, Sommer T, et al. Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002 ; 14 : 340–7. [CrossRef] [PubMed] [Google Scholar]
  47. Verbruggen F, Aron AR, Band GP. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019 ; 8 : e46323. [CrossRef] [PubMed] [Google Scholar]
  48. Baron-Cohen S, Wheelwright S, Hill J, et al. The “reading the mind in the eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 2001 ; 42 : 241–51. [CrossRef] [PubMed] [Google Scholar]
  49. Livingston LA, Shah P, White SJ, et al. Further developing the Frith-Happé animations: a quicker, more objective, and web-based test of theory of mind for autistic and neurotypical adults. Autism Res 2021 ; 14 : 1905–12. [CrossRef] [PubMed] [Google Scholar]
  50. St-Hilaire, A., Hudon, C., Vallet, G. et al. Normative data for phonemic and semantic verbal fluency test in the adult French-Quebec population and validation study in Alzheimer’s disease and depression. Clin Neuropsychol 2016 ; 30 : 1126–50. [CrossRef] [PubMed] [Google Scholar]
  51. Gorgievski V, Tzavara E, Giros B. Study of dopamine receptor and dopamine transporter networks in mice. In: Tiberi M, ed. Dopamine receptor technologies. Neuromethods. New York NY : Humana Press, 2015 ; vol. 96. [Google Scholar]
  52. Demazeux S, Pidoux V. Le projet RDoC : la classification psychiatrique de demain ? Med Sci (Paris) 2015 ; 31 : 792–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Leboyer M, Llorca PM. Le Programme-Projet en psychiatrie de précision (PEPR PROPSY), enjeux et défis de la psychiatrie de précision. Med Sci (Paris) 2025 ; 41 : 411–5. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.