Free Access
Issue |
Med Sci (Paris)
Volume 41, Number 5, Mai 2025
Enjeux et objectifs de la psychiatrie de précision
|
|
---|---|---|
Page(s) | 443 - 450 | |
Section | La psychiatrie de précision (PEPR PROPSY) : hypothèses et outils | |
DOI | https://doi.org/10.1051/medsci/2025075 | |
Published online | 26 May 2025 |
- Canas JJ, Fajardo I, Salmeron L. Cognitive flexibility. Int Encycl Ergon Human Fact 2006 ; 1 : 297–301. [Google Scholar]
- Davis JC, Marra CA, Najafzadeh M, et al. The independent contribution of executive functions to health related quality of life in older women. BMC Geriatr 2010 ; 10 : 16. [CrossRef] [PubMed] [Google Scholar]
- Hemi A, Sopp MR, Bonanno G, et al. Flexibility predicts chronic anxiety and depression during the first year of the COVID-19 pandemic-A longitudinal investigation of mental health trajectories. Psychol Trauma 2024 ; 16 : 961–70. [CrossRef] [PubMed] [Google Scholar]
- Zheng W, Akaliyski P, Ma C, et al. Cognitive flexibility and academic performance: individual and cross-national patterns among adolescents in 57 countries. Pers Indiv Differ 2024 ; 217 : 112455. [CrossRef] [Google Scholar]
- Diamond A. Executive functions. Annu Rev Psychol 2013 ; 64 : 135–68. [CrossRef] [PubMed] [Google Scholar]
- Miyake A, Friedman NP, Emerson MJ, et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 2000 ; 41 : 49–100. [CrossRef] [PubMed] [Google Scholar]
- Miyake A, Friedman NP. The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci 2012 ; 21 : 8–14. [CrossRef] [PubMed] [Google Scholar]
- Baggetta P, Alexander PA. Conceptualization and operationalization of executive function. Mind Brain Educ 2016 ; 10 : 10–33. [CrossRef] [Google Scholar]
- Lezak MD. Neuropsychological assessment. Oxford : Oxford University Press, 2004. [Google Scholar]
- Karr JE, Areshenkoff CN, Rast P, et al. The unity and diversity of executive functions: a systematic review and re-analysis of latent variable studies. Psychol Bull 2018 ; 144 : 1147–83. [CrossRef] [PubMed] [Google Scholar]
- Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010 ; 167 : 748–51. [CrossRef] [PubMed] [Google Scholar]
- Lavigne KM, Deng J, Raucher-Chéné D, et al. Transdiagnostic cognitive biases in psychiatric disorders: a systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024 ; 129 : 110894. [CrossRef] [PubMed] [Google Scholar]
- Abramovitch A, Short T, Schweiger A. The C factor: cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev 2021 ; 86 : 102007. [CrossRef] [PubMed] [Google Scholar]
- Caspi A, Moffitt TE. All for one and one for all: mental disorders in one dimension. Am J Psychiatry 2018 ; 175 : 831–44. [CrossRef] [PubMed] [Google Scholar]
- Abramovitch A, Short T, Schweiger A, et al. The C factor: cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev 2021 ; 86 : 102007. [CrossRef] [PubMed] [Google Scholar]
- Gosling CJ, Cartigny A, Stevanovic D, et al. Known-groups and convergent validity of the theory of mind task battery in children with autism spectrum disorder. Br J Clin Psychol 2023 ; 62 : 525–35. [CrossRef] [PubMed] [Google Scholar]
- Luciana M, Collins PF. Executive function in psychiatric disorders. Neuropsychol Rev 2022. [Google Scholar]
- Dajani DR, Uddin LQ. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci 2015 ; 38 : 571–8. [CrossRef] [PubMed] [Google Scholar]
- Uddin LQ. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat Rev Neurosci 2021 ; 22 : 167–79. [CrossRef] [PubMed] [Google Scholar]
- Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation, and clinical implications. Philos Trans R Soc B 2007 ; 362 : 917–32. [CrossRef] [PubMed] [Google Scholar]
- Izquierdo A, Brigman JL, Radke AK, et al. The neural basis of reversal learning: An updated perspective. Neuroscience 2017 ; 345 : 12–26. [CrossRef] [PubMed] [Google Scholar]
- Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024 ; 112 : 893–908. [CrossRef] [PubMed] [Google Scholar]
- Sheynikhovich D, et al. Dopamine and model-based flexibilty in Parkinson’s disease. Brain 2013. [Google Scholar]
- Cools R, Clark L, Owen AM, Robbins TW. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 2003 ; 23 : 4563–7. [Google Scholar]
- Prado VF, Janickova H, Al-Onaizi MA, et al. Cholinergic circuits in cognitive flexibility. Neuroscience 2017 ; 345 : 130–41. [CrossRef] [PubMed] [Google Scholar]
- Bell T, Lindner M, Langdon A, et al. Regional striatal cholinergic involvement in human behavioral flexibility. J Neurosci 2019 ; 39 : 5740–9. [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Hu X, Li Y. Investigating cognitive flexibility deficit in schizophrenia using task-based whole-brain functional connectivity. Front Psychiatry 2022 ; 13 : 1069036. [CrossRef] [PubMed] [Google Scholar]
- Hohl K, Dolcos S. Measuring cognitive flexibility: a brief review of neuropsychological, self-report, and neuroscientific approaches. Front Hum Neurosci 2024 ; 18 : 1331960. [CrossRef] [PubMed] [Google Scholar]
- Howlett CA, Wewege MA, Berryman C, et al. Same room - different windows ? A systematic review and meta-analysis of the relationship between self-report and neuropsychological tests of cognitive flexibility in healthy adults. Clin Psychol Rev 2021 ; 88 : 102061. [CrossRef] [PubMed] [Google Scholar]
- Howlett CA, Miles S, Berryman C, et al. Conflation between self-report and neurocognitive assessments of cognitive flexibility: a critical review of the Jingle Fallacy. Austr J Psychol 2023 ; 75 : 2174684. [CrossRef] [Google Scholar]
- Zühlsdorff M, Busch M, Meyer L, et al. Neural dynamics of cognitive flexibility: insights from fMRI and EEG. Brain Res 2023 ; 1801 : 148056. [Google Scholar]
- Hassani OK, Crombie D, Beninger RJ. Dopamine D2 receptor blockade impairs set-shifting, a form of cognitive flexibility, in rats. Behav Brain Res 2016 ; 311 : 172–80. [Google Scholar]
- Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology 2013 ; 64 : 168–84. [CrossRef] [PubMed] [Google Scholar]
- Figeys M, Cossette A, Cloutier AM, et al. The impact of cognitive remediation on social functioning in people with severe mental illness: a systematic review. Psychiatry Res 2022 ; 316 : 114733. [CrossRef] [PubMed] [Google Scholar]
- Witt K, Pulkowski U, Herzog J, et al. Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 2004 ; 61 : 697–700. [CrossRef] [PubMed] [Google Scholar]
- Eack SM, Greenwald DP, Hogarty SS, et al. Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatr Serv 2009 ; 60 : 1468–76. [CrossRef] [PubMed] [Google Scholar]
- Eack SM, Hogarty SS, Greenwald DP, et al. Cognitive enhancement therapy for adult autism spectrum disorder: results of an 18-month randomized clinical trial. Autism Res 2018 ; 11 : 519–30. [CrossRef] [PubMed] [Google Scholar]
- Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008 ; 9 : 58–65. [CrossRef] [PubMed] [Google Scholar]
- Voss MW, Nagamatsu LS, Liu-Ambrose T, et al. Exercise, brain, and cognition across the lifespan. J Appl Physiol 2011 ; 111 : 1505–13. [CrossRef] [PubMed] [Google Scholar]
- Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997 ; 386 : 493–5. [CrossRef] [PubMed] [Google Scholar]
- van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci 2000 ; 1 : 191–8. [CrossRef] [PubMed] [Google Scholar]
- Grant JE, Chamberlain SR. Impaired cognitive flexibility across psychiatric disorders. CNS Spectrums 2023 ; 28 : 688–92. [CrossRef] [PubMed] [Google Scholar]
- Sandberg MA. Cambridge neuropsychological testing automated battery. In : Kreutzer JS, DeLuca J, Caplan B, eds. Encyclopedia of Clinical Neuropsychology. Springer, 2011. [Google Scholar]
- Wechsler D. Wechsler. Adult intelligence scale, 4th ed (WAIS-IV) (database record). APA : PsycTests, 2008. [Google Scholar]
- Delis DC, Kramer JH, Kaplan E, et al. California verbal learning test, 2nd ed. Adult version. Manual. Psychological Corporation, 2000. [Google Scholar]
- Fan J, McCandliss BD, Sommer T, et al. Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002 ; 14 : 340–7. [CrossRef] [PubMed] [Google Scholar]
- Verbruggen F, Aron AR, Band GP. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019 ; 8 : e46323. [CrossRef] [PubMed] [Google Scholar]
- Baron-Cohen S, Wheelwright S, Hill J, et al. The “reading the mind in the eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 2001 ; 42 : 241–51. [CrossRef] [PubMed] [Google Scholar]
- Livingston LA, Shah P, White SJ, et al. Further developing the Frith-Happé animations: a quicker, more objective, and web-based test of theory of mind for autistic and neurotypical adults. Autism Res 2021 ; 14 : 1905–12. [CrossRef] [PubMed] [Google Scholar]
- St-Hilaire, A., Hudon, C., Vallet, G. et al. Normative data for phonemic and semantic verbal fluency test in the adult French-Quebec population and validation study in Alzheimer’s disease and depression. Clin Neuropsychol 2016 ; 30 : 1126–50. [CrossRef] [PubMed] [Google Scholar]
- Gorgievski V, Tzavara E, Giros B. Study of dopamine receptor and dopamine transporter networks in mice. In: Tiberi M, ed. Dopamine receptor technologies. Neuromethods. New York NY : Humana Press, 2015 ; vol. 96. [Google Scholar]
- Demazeux S, Pidoux V. Le projet RDoC : la classification psychiatrique de demain ? Med Sci (Paris) 2015 ; 31 : 792–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Leboyer M, Llorca PM. Le Programme-Projet en psychiatrie de précision (PEPR PROPSY), enjeux et défis de la psychiatrie de précision. Med Sci (Paris) 2025 ; 41 : 411–5. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.