Numéro
Med Sci (Paris)
Volume 40, Numéro 11, Novembre 2024
Les microbes, l’Anthropocène et nous
Page(s) 858 - 863
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024147
Publié en ligne 10 décembre 2024
  1. Béchet B, Le Bissonnais Y, Ruas A, et al. Sols artificialisés et processus d’artificialisation des sols : déterminants, impacts et leviers d’action. Rapport d’expertise collective. INRA 2017, 609 p. [Google Scholar]
  2. Anthony MA, Bender SF, van der Heijden MGA. Enumerating soil biodiversity. Proc Natl Acad Sci U S A 2023 ; 120 : e2304663120. [CrossRef] [PubMed] [Google Scholar]
  3. Swift MJ, Heal OW, Anderson JM. Decomposition in Terrestrial Ecosystems. Studies in Ecology vol. 5. Oxford : Blackwell Scientific, 1979. [Google Scholar]
  4. Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environmental Chemistry Letters 2018 ; 16 : 1267–82. [CrossRef] [Google Scholar]
  5. Auclerc A. Ecosystem services provided by soils. Biodiversity. In: Soils within Cities. Global approaches to their sustainable management. Levin, et al. (Eds). Stuttgart : Catena Soil Sciences, 2017 ; pp. 213–20. [Google Scholar]
  6. Morel JL, Chenu C, Lorenz K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments 2015 ; 15 : 1659–66. [CrossRef] [Google Scholar]
  7. Joimel S, Schwartz C, Hedde M, et al. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of the Total Environment 2017 ; 584-5 : 614–21. [CrossRef] [Google Scholar]
  8. Vergnes A, Le Viol I, Clergeau P. Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biological Conservation 2012 ; 145 : 171–8. [CrossRef] [Google Scholar]
  9. Vergnes A, Blouin M, Muratet A, et al. Initial conditions during Technosol implementation shape earthworms and ants diversity. Landscape and Urban Planning 2017 ; 159 : 32–41. [CrossRef] [Google Scholar]
  10. Trammell TLE, Tripler CE, Carper SC, Carreiro MM. Potential nitrogen mineralization responses of urban and rural forest soils to elevated temperature in Louisville, KY. Urban Ecosystems 2017 ; 20 : 77–86. [CrossRef] [Google Scholar]
  11. Ramirez KS, Leff JW, Barberán A, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceeding of the Royal Society B 2014 ; 281 : 1795. [Google Scholar]
  12. Reese AT, Savage A, Youngsteadt E, et al. Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. ISME Journal 2016 ; 10 : 751–60. [CrossRef] [PubMed] [Google Scholar]
  13. Gill AS, Lee A, McGuire KL. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Applied and Environmental Microbiology 2017 ; 83 : e00287–17. [PubMed] [Google Scholar]
  14. Huot H, Joyner J, Córdoba A, et al. Characterizing urban soils in New York City: profile properties and bacterial communities. Journal of Soils and Sediments 2017 ; 17 : 393–407. [CrossRef] [Google Scholar]
  15. Li X, Hou L, Liu M, et al. Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Applied Microbiology and Biotechnology 2015 ; 99 : 3639–49. [CrossRef] [PubMed] [Google Scholar]
  16. Wang H, Marshall CW, Cheng M, et al. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports 2017 ; 7: 44049. [CrossRef] [PubMed] [Google Scholar]
  17. McGuire KL, Payne SG, Palmer MI, et al. Digging the New York City Skyline: soil fungal communities in green roofs and city parks. PLoS One 2013 ; 8 : e58020. [CrossRef] [PubMed] [Google Scholar]
  18. Hui N, Jumpponen A, Francini G, et al. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental microbiology 2017 ; 19 : 1281–95. [CrossRef] [PubMed] [Google Scholar]
  19. Yuangen Y, Campbell CD, Clark L, et al. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 2006 ; 63 : 1942–52. [CrossRef] [PubMed] [Google Scholar]
  20. Rai PK, Rai A, Singh S. Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India). Geology, Ecology, and Landscapes 2018 ; 2 : 15–21. [CrossRef] [Google Scholar]
  21. Christel A, Dequiedt S, Chemidlin Prévost-Bouré N, et al. Urban land uses shape soil microbial abundance and diversity. Science of the Total Environment 2023 ; 883 : 163455. [CrossRef] [Google Scholar]
  22. Xu HJ, Li S, Su JQ, et al. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology 2014 ; 87 : 182–92. [CrossRef] [PubMed] [Google Scholar]
  23. Abawi GS, Widmer TL. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology 2000 ; 15 : 37–47. [CrossRef] [Google Scholar]
  24. Karimi B, Chemidlin Prévost-Bouré N, Dequiedt S, et al. Atlas français des bactéries du sol. Muséum national d’Histoire naturelle, Paris ; Biotope, Mèze 2018 ; 192 p. [Google Scholar]
  25. Djemiel C, Terrat S, Dequiedt S, et al. Atlas français des champignons du sol. Biotope, Mèze ; Muséum national d’histoire naturelle, Paris 2024 ; 304 p. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.