Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 1, Janvier 2022
Page(s) 84 - 88
Section Repères
DOI https://doi.org/10.1051/medsci/2021247
Publié en ligne 21 janvier 2022
  1. Hubel DH. The Way Biomedical Research Is Organized Has Dramatically Changed Over the Past Half-Century : Are the Changes for the Better?. Neuron 2009 ; 64 : 161–163. [CrossRef] [PubMed] [Google Scholar]
  2. Monastersky R, van Noorden R. 150 years of Nature : a data graphic charts our evolution. Nature 2019 ; 575 : 22–23. [CrossRef] [PubMed] [Google Scholar]
  3. Gomez Diaz M. Unintended effects of changes in NIH appropriations : Challenges for biomedical research workforce development. PhD Thesis, Massachusetts Institute of Technology. 2012. [Google Scholar]
  4. L’état de l’emploi scientifique en France-Édition 2020. Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation. www.enseignementsup-recherche.gouv.fr/cid154848/l-etat-de-l-emploi-scientifique-en-france-edition-2020.html. [Google Scholar]
  5. Enders J, Musselin C. Back to the future? The academic professions in the 21st century. High Educ To 2008 ; 2030 : 125–150. [Google Scholar]
  6. Hodgkin A, Huxley A. Action Potentials Recorded from Inside a Nerve Fibre. Nature 1939 ; 144 : 710. [CrossRef] [Google Scholar]
  7. Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 1949 ; 108 : 37. [CrossRef] [PubMed] [Google Scholar]
  8. Kaiser D.. The search for clean cash. Nature 2011 ; 472 : 30–31. [CrossRef] [PubMed] [Google Scholar]
  9. Ferlie E, Musselin C, Andresani G. The steering of higher education systems : a public management perspective. High Educ 2008 ; 56 : 325. [CrossRef] [Google Scholar]
  10. La Hibou B.. bureaucratisation du monde à l’ère néolibérale. Paris: La Découverte, 2012. [Google Scholar]
  11. Gläser J, Laudel G. Governing Science : How Science Policy Shapes Research Content. Eur J Sociol Arch Eur Sociol 2016 ; 57 : 117–168. [CrossRef] [Google Scholar]
  12. Couzin J, Miller G. Boom and Bust. Science 2007 ; 316 : 356–361. [CrossRef] [PubMed] [Google Scholar]
  13. Cook I, Grange S, Eyre-Walker A. Research groups : How big should they be? PeerJ 2015; 3. doi : 10.7717/peerj.989. [Google Scholar]
  14. Fortin JM, Currie DJ. Big Science vs. Little Science: How Scientific Impact Scales with Funding. PLoS ONE 2013 ; 8. [Google Scholar]
  15. Mongeon P, Brodeur C, Beaudry C, Lariviere V. Concentration of research funding leads to decreasing marginal returns. Res Eval 2016; rvw007. [CrossRef] [Google Scholar]
  16. Wahls WP. The NIH must reduce disparities in funding to maximize its return on investments from taxpayers. eLife; 7. [Google Scholar]
  17. Rosser JB, Jr.. A Nobel Prize for Asymmetric Information : The economic contributions of George Akerlof, Michael Spence and Joseph Stiglitz. Rev Polit Econ 2003 ; 15 : 3–21. [CrossRef] [Google Scholar]
  18. Engel P.. Les Vices du savoir : Essai d’éthique intellectuelle. Paris: Agone, 2019. [Google Scholar]
  19. Csikszentmihalyi M.. Creativity : Flow and the Psychology of Discovery and Invention. 1st edition. New York: Harper Perennial, 2013. [Google Scholar]
  20. Box GEP. Robustness in the Strategy of Scientific Model Building. In: Launer RL, Wilkinson GN, editors. Robustness in Statistics. Academic Press, 1979 ; pp. 201–236. [Google Scholar]
  21. Hollingsworth JR. Scientific Discoveries : An Institutionalist and Path-Dependent Perspective, 2008. In Caroline Hannaway, ed., Biomedicine in the Twentieth Century: Practices, Policies, and Politics. Bethesda, MD: National Institutes of Health, 2008 pp. 317–353. [Google Scholar]
  22. Bromham L, Dinnage R, Hua X. Interdisciplinary research has consistently lower funding success. Nature 2016 ; 534 : 684–687. [CrossRef] [PubMed] [Google Scholar]
  23. Graves N, Barnett AG, Clarke P. Funding grant proposals for scientific research : retrospective analysis of scores by members of grant review panel. BMJ 2011 ; 343 : d4797. [CrossRef] [PubMed] [Google Scholar]
  24. Fang FC, Bowen A, Casadevall A. NIH peer review percentile scores are poorly predictive of grant productivity. Elife 2016 ; 5 : e13323. [CrossRef] [PubMed] [Google Scholar]
  25. Scheiner SM, Bouchie LM. The predictive power of NSF reviewers and panels. Front Ecol Environ 2013 ; 11 : 406–407. [CrossRef] [Google Scholar]
  26. Gross K, Bergstrom CT. Contest models highlight inherent inefficiencies of scientific funding competitions. PLOS Biol 2019 ; 17 : e3000065. [CrossRef] [PubMed] [Google Scholar]
  27. Fang FC, Casadevall A. Research Funding: the Case for a Modified Lottery. mBio 2016; 7. [Google Scholar]
  28. Liu M, Choy V, Clarke P, Barnett A, Blakely T, Pomeroy L. The acceptability of using a lottery to allocate research funding : a survey of applicants. Res Integr Peer Rev 2020; 5 : 3. [CrossRef] [PubMed] [Google Scholar]
  29. Haiech J, Jouault T. Think small! Science disruptive et petites équipes. Med Sci (Paris) 2020; 36 : 651–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.