Open Access
Issue
Med Sci (Paris)
Volume 36, Number 5, Mai 2020
Page(s) 479 - 486
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020090
Published online 26 May 2020
  1. Alzheimer’s Association Report. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015 ; 11 : 332–384. [CrossRef] [PubMed] [Google Scholar]
  2. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on aging-Alzheimer’s association workgroups on diagnostic guide- lines for Alzheimer’s disease. Alzheimers Dement 2011 ; 7 : 263–269. [CrossRef] [PubMed] [Google Scholar]
  3. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991 ; 82 : 239–259. [CrossRef] [PubMed] [Google Scholar]
  4. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016 ; 12 : 733–748. [CrossRef] [PubMed] [Google Scholar]
  5. Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 2016 ; 15 : 857–868. [CrossRef] [PubMed] [Google Scholar]
  6. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 2011 ; 10 : 241–252. [CrossRef] [PubMed] [Google Scholar]
  7. Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimer Dis 2016 ; 51 : 979–984. [CrossRef] [Google Scholar]
  8. Miklossy J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci 2015 ; 7 : 46. [CrossRef] [PubMed] [Google Scholar]
  9. Alonso R, Pisa D, Marina AI, et al. Fungal infection in patients with Alzheimer’s disease. J Alzheimers Dis 2014 ; 41 : 301–311. [CrossRef] [PubMed] [Google Scholar]
  10. Kane MD, Lipinski WJ, Callahan MJ, et al. Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 2000 ; 20 : 3606–3611. [CrossRef] [PubMed] [Google Scholar]
  11. Jamieson GA, Maitland NJ, Wilcock GK, et al. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol 1991 ; 33 : 224–227. [CrossRef] [PubMed] [Google Scholar]
  12. Bibi F, Yasir M, Sohrab SS, et al. Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets 2014 ; 13 : 1140–1147. [Google Scholar]
  13. Potgieter M, Bester J, Kell DB, et al. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015 ; 39 : 567–591. [CrossRef] [PubMed] [Google Scholar]
  14. Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013 ; 9 : 25–34. [CrossRef] [PubMed] [Google Scholar]
  15. Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982 ; 217 : 408–414. [Google Scholar]
  16. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991 ; 12 : 383–388. [Google Scholar]
  17. McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002 ; 8 : 529–538. [CrossRef] [PubMed] [Google Scholar]
  18. Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimer Dis 2008 ; 13 : 359–369. [CrossRef] [Google Scholar]
  19. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Series A, Biol Sci Med Sci 2014 ; 69 : suppl 1 S4–S9. [CrossRef] [PubMed] [Google Scholar]
  20. Maheshwari P, Eslick GD. Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimer Dis 2015 ; 43 : 957–966. [CrossRef] [Google Scholar]
  21. Paradowski B, Jaremko M, Dobosz T, et al. Evaluation of CSF-Chlamydia pneumoniae, CSF-tau, and CSF-Abeta42 in Alzheimer’s disease and vascular dementia. J Neurol 2007 ; 254 : 154–159. [CrossRef] [PubMed] [Google Scholar]
  22. Balin BJ, Gérard HC, Arking EJ, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 1998 ; 187 : 23–42. [CrossRef] [PubMed] [Google Scholar]
  23. Stanek G, Wormser GP, Gray J, et al. Lyme borreliosis. Lancet (London, England) 2012; 379 : 461–73. [CrossRef] [PubMed] [Google Scholar]
  24. Radolf JD, Goldberg MS, Bourell K, et al. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 1995 ; 63 : 2154–2163. [CrossRef] [PubMed] [Google Scholar]
  25. MacDonald AB. Alzheimer’s neuroborreliosis with trans-synaptic spread of infection and neurofibrillary tangles derived from intraneuronal spirochetes. Med Hypotheses 2007 ; 68 : 822–825. [Google Scholar]
  26. Noguchi H, Moore JW. A demonstration of Treponema pallidum in the brain in cases of general paralysis. J Exp Med 1913 ; 17 : 232–238. [CrossRef] [PubMed] [Google Scholar]
  27. Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 2011 ; 13 : e30. [CrossRef] [PubMed] [Google Scholar]
  28. Pisa D, Alonso R, Rabano A, et al. Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 2015 ; 5 : 15015. [CrossRef] [PubMed] [Google Scholar]
  29. Möhle L, Israel N, Paarmann K, et al. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun 2016 ; 4 : 25. [Google Scholar]
  30. Prandota J. Metabolic, immune, epigenetic, endocrine and phenotypic abnormalities found in individuals with autism spectrum disorders, Down syndrome and Alzheimer disease may be caused by congenital and/or acquired chronic cerebral toxoplasmosis. Res Autism Spectr Disord 2011 ; 5 : 14–59. [Google Scholar]
  31. Prandota J. Possible link between Toxoplasma gondii and the anosmia associated with neurodegenerative diseases. Am J Alzheimers Dis Other Dementias 2014 ; 29 : 205–214. [CrossRef] [Google Scholar]
  32. Ashraf GM, Tarasov VV, Makhmutova A, et al. The possibility of an infectious etiology of Alzheimer disease. Mol Neurobiol 2019 ; 56 : 4479–4491. [CrossRef] [PubMed] [Google Scholar]
  33. Deshmane SL, Fraser NW. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 1989 ; 63 : 943–947. [CrossRef] [PubMed] [Google Scholar]
  34. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 2009 ; 217 : 131–138. [PubMed] [Google Scholar]
  35. Mori I, Nishiyama Y, Yokochi T, et al. Olfactory transmission of neurotropic viruses. J Neurovirol 2005 ; 11 : 129–137. [CrossRef] [PubMed] [Google Scholar]
  36. Letenneur L, Peres K, Fleury H, et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One 2008 ; 3 : e3637. [CrossRef] [PubMed] [Google Scholar]
  37. Wozniak MA, Itzhaki RF, Shipley SJ, et al. Herpes simplex virus infection causes cellular amyloid accumulation and secretase up-regulation. Neurosci Lett 2007 ; 429 : 95–100. [CrossRef] [PubMed] [Google Scholar]
  38. De Chiara G, Marcocci ME, Civitelli L, et al. APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One 2010 ; 5 : e13989. [CrossRef] [PubMed] [Google Scholar]
  39. Wozniak MA, Frost AL, Preston CM, et al. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One 2011 ; 6 : e25152. [CrossRef] [PubMed] [Google Scholar]
  40. Harris S, Harris EA. Molecular mechanisms for Herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front Aging Neurosci 2018 ; 10 : 48. [CrossRef] [PubMed] [Google Scholar]
  41. Wozniak MA, Frost AL, Itzhaki RF. Alzheimer’s disease- specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis 2009 ; 16 : 341–350. [CrossRef] [PubMed] [Google Scholar]
  42. Zambrano A, Solis L, Salvadores N, et al. Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1. J Alzheimers Dis 2008 ; 14 : 259–269. [CrossRef] [PubMed] [Google Scholar]
  43. Yu JT, Tan L, Hardy J. Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 2014 ; 37 : 79–100. [CrossRef] [PubMed] [Google Scholar]
  44. Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: Increasing evidence for a major role of the virus. Front Aging Neurosci 2014 ; 6 : 202. [CrossRef] [PubMed] [Google Scholar]
  45. Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018 ; 99 : 64–82. [CrossRef] [PubMed] [Google Scholar]
  46. Haas JG, Lathe R. Microbes and Alzheimer’s disease: new findings call for a paradigm change. Trends Neurosci 2018 ; 41 : 570–573. [CrossRef] [PubMed] [Google Scholar]
  47. Eimer WA, Kumar DKV, Navalpur Shanmugam NK, et al. Alzheimer’s disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018 ; 99 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  48. Kumar DK, Choi SH, Washicosky KJ, et al. Amyloid-b peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016; 8 : 340ra72. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.