Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 12, Décembre 2018
Page(s) 1092 - 1099
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018294
Publié en ligne 9 janvier 2019
  1. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 ; 8 : 315–317. [CrossRef] [PubMed] [Google Scholar]
  2. Noel D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 2008 ; 314 : 1575–1584. [CrossRef] [PubMed] [Google Scholar]
  3. Skalnikova H, Motlik J, Gadher SJ, Kovarova H. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 2011 ; 11 : 691–708. [CrossRef] [PubMed] [Google Scholar]
  4. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014 ; 505 : 327–334. [CrossRef] [PubMed] [Google Scholar]
  5. Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med 2014 ; 20 : 847–856. [CrossRef] [PubMed] [Google Scholar]
  6. Cosenza S, Ruiz M, Maumus M, et al. Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: Role of mesenchymal stem cell-derived vesicles. Int J Mol Sci 2017 ; 18. [Google Scholar]
  7. Maumus M, Jorgensen C, Noel D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 2013 ; 95 : 2229–2234. [CrossRef] [PubMed] [Google Scholar]
  8. Correa D, Somoza RA, Lin P, et al. Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthritis Cartilage 2015 ; 23 : 443–453. [CrossRef] [PubMed] [Google Scholar]
  9. Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A 2017 ; 105 : 2343–2354. [CrossRef] [PubMed] [Google Scholar]
  10. Wu L, Leijten JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 2011 ; 17 : 1425–1436. [CrossRef] [PubMed] [Google Scholar]
  11. Maumus M, Manferdini C, Toupet K, et al. Thrombospondin-1 partly mediates the cartilage protective effect of adipose-derived mesenchymal stem cells in osteoarthritis. Front Immunol 2017 ; 8 : 1638. [Google Scholar]
  12. Manferdini C, Maumus M, Gabusi E, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin e2. Arthritis Rheum 2013 ; 65 : 1271–1281. [CrossRef] [PubMed] [Google Scholar]
  13. Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthritis Cartilage 2017 ; 25 : 1161–1171. [CrossRef] [PubMed] [Google Scholar]
  14. Maumus M, Manferdini C, Toupet K, et al. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 2013 ; 11 : 834–844. [Google Scholar]
  15. Wang H, Yan X, Jiang Y, et al. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol Med Rep 2018 ; 17 : 4474–4482. [PubMed] [Google Scholar]
  16. Platas J, Guillen MI, Perez Del Caz MD, et al. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging (Albany NY) 2016 ; 8 : 1703–1717. [Google Scholar]
  17. Tofino-Vian M, Guillen MI, Perez Del Caz MD, et al. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev 2017; 7197598. [PubMed] [Google Scholar]
  18. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol 2014 ; 5 : 148. [Google Scholar]
  19. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003 ; 48 : 3464–3474. [CrossRef] [PubMed] [Google Scholar]
  20. Ter Huurne M, Schelbergen R, Blattes R, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 2012 ; 64 : 3604–3613. [CrossRef] [PubMed] [Google Scholar]
  21. Diekman BO, Wu CL, Louer CR, et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant 2013 ; 22 : 1395–1408. [CrossRef] [PubMed] [Google Scholar]
  22. Pak J, Lee JH, Park KS, et al. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. J Biomed Sci 2017 ; 24 : 9. [CrossRef] [PubMed] [Google Scholar]
  23. Pers YM, Ruiz M, Noel D, Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis Cartilage 2015 ; 23 : 2027–2035. [CrossRef] [PubMed] [Google Scholar]
  24. Cosenza S, Ruiz M, Toupet K, et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017 ; 7 : 16214. [CrossRef] [PubMed] [Google Scholar]
  25. Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017 ; 7 : 180–195. [CrossRef] [PubMed] [Google Scholar]
  26. Wang L, Gu Z, Zhao X, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev 2016 ; 25 : 1874–1883. [CrossRef] [PubMed] [Google Scholar]
  27. Wang Z, Wang Z, Lu W, et al. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Materials 2017 ; 9 : e435. [Google Scholar]
  28. Maumus M, Roussignol G, Toupet K, et al. Utility of a mouse model of osteoarthritis to demonstrate cartilage protection by IFNgamma-primed equine mesenchymal stem cells. Front Immunol 2016 ; 7 : 392. [Google Scholar]
  29. Mastri M, Lin H, Lee T. Enhancing the efficacy of mesenchymal stem cell therapy. World J Stem Cells 2014 ; 6 : 82–93. [CrossRef] [PubMed] [Google Scholar]
  30. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2007 ; 2 : e416. [CrossRef] [PubMed] [Google Scholar]
  31. de Wolf C, van de Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy 2017 ; 19 : 784–797. [CrossRef] [PubMed] [Google Scholar]
  32. Lee RH, Yu JM, Foskett AM, et al. TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A 2014 ; 111 : 16766–16771. [CrossRef] [PubMed] [Google Scholar]
  33. Thej C, Ramadasse B, Walvekar A, et al. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel(R), a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Res Ther 2017 ; 8 : 47. [Google Scholar]
  34. Galipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016 ; 18 : 151–159. [CrossRef] [PubMed] [Google Scholar]
  35. Tachikart Y, Malaise O, Constantinides M, et al. Cibler les cellules sénescentes : une révolution dans le traitement des pathologies ostéo-articulaires. Med Sci (Paris) 2018 ; 34 : 547–553. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Stik G, Laurence Petit L, Charbord P, et al. Vésicules extracellulaires stromales et régulation des cellules souches et progéniteurs hématopoïétiques. Med Sci (Paris) 2018 ; 34 : 114–116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018 ; 34 : 936–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.