Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 12, Décembre 2016
|
|
---|---|---|
Page(s) | 1079 - 1086 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163212011 | |
Publié en ligne | 3 janvier 2017 |
- 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015 ; 526 : 68–74. [CrossRef] [PubMed] [Google Scholar]
- Vitti JJ, Grossman SR, Sabeti PC. Detecting natural selection in genomic data. Annu Rev Genet 2013 ; 47 : 97–120. [CrossRef] [PubMed] [Google Scholar]
- Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology : how selection shapes host defence genes. Nat Rev Genet 2010 ; 11 : 17–30. [CrossRef] [PubMed] [Google Scholar]
- Karlsson EK, Kwiatkowski DP, Sabeti PC. Natural selection and infectious disease in human populations. Nat Rev Genet 2014 ; 15 : 379–393. [CrossRef] [PubMed] [Google Scholar]
- Nielsen R, Hellmann I, Hubisz M, et al. Recent and ongoing selection in the human genome. Nat Rev Genet 2007 ; 8 : 857–868. [CrossRef] [PubMed] [Google Scholar]
- Hublin JJ. Out of Africa : modern human origins special feature. The origin of Neandertals. Proc Natl Acad Sci USA 2009 ; 106 : 16022–16027. [CrossRef] [Google Scholar]
- Higham T, Douka K, Wood R, et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 2014 ; 512 : 306–309. [CrossRef] [PubMed] [Google Scholar]
- Castellano S, Parra G, Sanchez-Quinto FA, et al. Patterns of coding variation in the complete exomes of three Neandertals. Proc Natl Acad Sci USA 2014 ; 111 : 6666–6671. [CrossRef] [Google Scholar]
- Green RE, Krause J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science 2010 ; 328 : 710–722. [CrossRef] [PubMed] [Google Scholar]
- Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 2012 ; 338 : 222–226. [CrossRef] [PubMed] [Google Scholar]
- Prufer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 2014 ; 505 : 43–49. [CrossRef] [PubMed] [Google Scholar]
- Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 2010 ; 468 : 1053–1060. [CrossRef] [PubMed] [Google Scholar]
- Lachance J, Vernot B, Elbers CC, et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 2012 ; 150 : 457–469. [CrossRef] [PubMed] [Google Scholar]
- Sankararaman S, Mallick S, Dannemann M, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 2014 ; 507 : 354–357. [CrossRef] [PubMed] [Google Scholar]
- Vernot B, Akey JM. Resurrecting surviving Neandertal lineages from modern human genomes. Science 2014 ; 343 : 1017–1021. [CrossRef] [PubMed] [Google Scholar]
- Huerta-Sanchez E, Jin X, Asan, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 2014 ; 512 : 194–197. [CrossRef] [PubMed] [Google Scholar]
- Dannemann M, Andres AM, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am J Hum Genet 2016 ; 98 : 22–33. [CrossRef] [PubMed] [Google Scholar]
- Abi-Rached L, Jobin MJ, Kulkarni S, et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 2011 ; 334 : 89–94. [CrossRef] [PubMed] [Google Scholar]
- Mendez FL, Watkins JC, Hammer MF. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol Biol Evol 2012 ; 29 : 1513–1520. [CrossRef] [PubMed] [Google Scholar]
- Mendez FL, Watkins JC, Hammer MF. A haplotype at STAT2 Introgressed from neanderthals and serves as a candidate of positive selection in Papua New Guinea. Am J Hum Genet 2012 ; 91 : 265–274. [CrossRef] [PubMed] [Google Scholar]
- Mendez FL, Watkins JC, Hammer MF. Neandertal origin of genetic variation at the cluster of OAS immunity genes. Mol Biol Evol 2013 ; 30 : 798–801. [CrossRef] [PubMed] [Google Scholar]
- Deschamps M, Laval G, Fagny M, et al. Genomic signatures of selective pressures and introgression from archaic Hominins at human innate immunity genes. Am J Hum Genet 2016 ; 98 : 5–21. [CrossRef] [PubMed] [Google Scholar]
- Casanova JL, Abel L. Inborn errors of immunity to infection : the rule rather than the exception. J Exp Med 2005 ; 202 : 197–201. [CrossRef] [PubMed] [Google Scholar]
- Bustamante CD, Fledel-Alon A, Williamson S, et al. Natural selection on protein-coding genes in the human genome. Nature 2005 ; 437 : 1153–1157. [CrossRef] [PubMed] [Google Scholar]
- Barreiro LB, Laval G, Quach H, et al. Natural selection has driven population differentiation in modern humans. Nat Genet 2008 ; 40 : 340–345. [CrossRef] [PubMed] [Google Scholar]
- Grossman SR, Andersen KG, Shlyakhter I, et al. Identifying recent adaptations in large-scale genomic data. Cell 2013 ; 152 : 703–713. [CrossRef] [PubMed] [Google Scholar]
- Pickrell JK, Coop G, Novembre J, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res 2009 ; 19 : 826–837. [CrossRef] [PubMed] [Google Scholar]
- Fumagalli M, Cagliani R, Pozzoli U, et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res 2009 ; 19 : 199–212. [CrossRef] [PubMed] [Google Scholar]
- Fumagalli M, Sironi M, Pozzoli U, et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 2011 ; 7 : e1002355. [CrossRef] [PubMed] [Google Scholar]
- Prugnolle F, Manica A, Charpentier M, et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 2005 ; 15 : 1022–1027. [CrossRef] [PubMed] [Google Scholar]
- Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol 2013 ; 13 : 280–293. [CrossRef] [PubMed] [Google Scholar]
- Barreiro LB, Ben-Ali M, Quach H, et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 2009 ; 5 : e1000562. [CrossRef] [PubMed] [Google Scholar]
- Vasseur E, Boniotto M, Patin E, et al. The evolutionary landscape of cytosolic microbial sensors in humans. Am J Hum Genet 2012 ; 91 : 27–37. [CrossRef] [PubMed] [Google Scholar]
- Fornarino S, Laval G, Barreiro LB, et al. Evolution of the TIR domain-containing adaptors in humans : swinging between constraint and adaptation. Mol Biol Evol 2011 ; 28 : 3087–3097. [CrossRef] [PubMed] [Google Scholar]
- Manry J, Laval G, Patin E, et al. Evolutionary genetic dissection of human interferons. J Exp Med 2011 ; 208 : 2747–2759. [CrossRef] [PubMed] [Google Scholar]
- Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012 ; 491 : 56–65. [CrossRef] [PubMed] [Google Scholar]
- Boisson-Dupuis S, Kong XF, Okada S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol 2012 ; 24 : 364–378. [CrossRef] [PubMed] [Google Scholar]
- Perez de Diego R, Sancho-Shimizu V, Lorenzo L, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010 ; 33 : 400–411. [CrossRef] [PubMed] [Google Scholar]
- Everitt AR, Clare S, Pertel T, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012 ; 484 : 519–523. [CrossRef] [PubMed] [Google Scholar]
- Brinkworth JF, Barreiro LB. The contribution of natural selection to present-day susceptibility to chronic inflammatory and autoimmune disease. Curr Opin Immunol 2014 ; 31 : 66–78. [CrossRef] [PubMed] [Google Scholar]
- Hinds DA, McMahon G, Kiefer AK, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet 2013 ; 45 : 907–911. [CrossRef] [PubMed] [Google Scholar]
- Mayerle J, den Hoed CM, Schurmann C, et al. Identification of genetic loci associated with Helicobacter pylori serologic status. JAMA 2013 ; 309 : 1912–1920. [CrossRef] [PubMed] [Google Scholar]
- Jordan B. Chroniques génomiques. Néandertal et Homo sapiens : To meet, or not to meet? Med Sci (Paris) 2012 ; 28 : 1129–1132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Manry J, Quintana-Murci L. Génétique des populations et immunité chez l’homme. Med Sci (Paris) 2012 ; 28 : 1095–1101. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.