Addictions
Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 5, Mai 2015
Addictions
Page(s) 546 - 550
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153105017
Publié en ligne 9 juin 2015
  1. Grant BF. Comorbidity between DSM-IV drug use disorders and major depression: results of a national survey of adults. J Subst Abuse 1995 ; 7 : 481–497. [CrossRef] [PubMed]
  2. Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National comorbidity survey replication (NCS-R). JAMA 2003 ; 289 : 3095–3105. [CrossRef] [PubMed]
  3. Swendsen JD, Merikangas KR. The comorbidity of depression and substance use disorders. Clin Psychol Rev 2000 ; 20 : 173–189. [CrossRef] [PubMed]
  4. Vialou V. Dépression et régulation de l’activité dopaminergique. Med Sci (Paris) 2013 ; 29 : 473–477. [CrossRef] [EDP Sciences] [PubMed]
  5. Volman SF, Lammel S, Margolis EB, et al. New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system. J Neurosci 2013 ; 33 : 17569–76. [CrossRef] [PubMed]
  6. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006 ; 29 : 565–598. [CrossRef] [PubMed]
  7. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013 ; 14 : 609–625. [CrossRef] [PubMed]
  8. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 2012 ; 35 : 68–77. [CrossRef] [PubMed]
  9. Bewernick BH, Hurlemann R, Matusch A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010 ; 67 : 110–116. [CrossRef] [PubMed]
  10. Kuhn J, Moller M, Treppmann JF, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry 2014 ; 19 : 145–146. [CrossRef]
  11. Aouizerate B, Martin-Guehl C, Cuny E, et al. Stimulation cérébrale profonde du striatum ventral dans le traitement du trouble obsessionnel-compulsif avec dépression majeure. Med Sci (Paris) 2005 ; 21 : 811–813. [CrossRef] [EDP Sciences] [PubMed]
  12. Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 2002 ; 53 : 590–605. [CrossRef] [PubMed]
  13. Lobo MK, Covington HE 3rd, Chaudhury D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010 ; 330 : 385–390. [CrossRef] [PubMed]
  14. Hikida T, Kimura K, Wada N, et al. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 2010 ; 66 : 896–907. [CrossRef] [PubMed]
  15. Bertran-Gonzalez J, Bosch C, Maroteaux M, et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 2008 ; 28 : 5671–5685. [CrossRef] [PubMed]
  16. Svenningsson P, Chergui K, Rachleff I, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006 ; 311 : 77–80. [CrossRef] [PubMed]
  17. Warner-Schmidt JL, Flajolet M, Maller A, et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci 2009 ; 29 : 1937–1946. [CrossRef] [PubMed]
  18. Svenningsson P, Kim Y, Warner-Schmidt J, et al. p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci 2013 ; 14 : 673–680. [CrossRef] [PubMed]
  19. Alexander B, Warner-Schmidt J, Eriksson T, et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2010 ; 2 : 54ra76. [CrossRef]
  20. Warner-Schmidt JL, Schmidt EF, Marshall JJ, et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci USA 2012 ; 109 : 11360–5. [CrossRef]
  21. Le Moine C, Tison F, Bloch B. D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci Lett 1990 ; 117 : 248–252. [CrossRef] [PubMed]
  22. Nelson AB, Hang GB, Grueter BA, et al. A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice. J Neurosci 2012 ; 32 : 9119–9123. [CrossRef] [PubMed]
  23. Arango-Lievano M, Schwarz JT, Vernov M, et al. Cell-type specific expression of p11 controls cocaine reward. Biol Psychiatry 2014 ; 76 : 794–801. [CrossRef] [PubMed]
  24. Gong S, Doughty M, Harbaugh CR, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 2007 ; 27 : 9817–9823. [CrossRef] [PubMed]
  25. Chen G, Twyman R, Manji HK. p11 and gene therapy for severe psychiatric disorders: a practical goal? Sci Transl Med 2010 ; 2 : 54ps1. [CrossRef]
  26. Dugué GP, Tricoire L. Principes et applications de l’optogénétique en neuroscience. Med Sci (Paris) 2015 ; 31 : 291–303. [CrossRef] [EDP Sciences] [PubMed]
  27. Vandecasteele M, Senova YS, Palfi S, Dugué GP. Potentiel thérapeutique de la neuromodulation optogénétique. Med Sci (Paris) 2015 ; 31 : 404–416. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.