Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 5, Mai 2015
Page(s) 515 - 521
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153105013
Publié en ligne 9 juin 2015
  1. Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014 ; 5 : 313. [CrossRef] [PubMed]
  2. Margolis HC, Kwak SY, Yamazaki H. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation. Front Physiol 2014 ; 5 : 339. [CrossRef] [PubMed]
  3. Hu JC, Yamakoshi Y, Yamakoshi F, et al. Proteomics and genetics of dental enamel. Cells Tissues Organs 2005 ; 181 : 219–231. [CrossRef] [PubMed]
  4. Martinez-Avila O, Wu S, Kim SJ, et al. Self-assembly of filamentous amelogenin requires calcium and phosphate: from dimers via nanoribbons to fibrils. Biomacromolecules 2012 ; 13 : 3494–3502. [CrossRef] [PubMed]
  5. Brookes SJ, Lyngstadaas SP, Robinson C, et al. Intracellular nanosphere subunit assembly as revealed by amelogenin molecular cross-linking studies. Eur J Oral Sci 2006 ; 114 : 280–286. [CrossRef] [PubMed]
  6. Du C, Falini G, Fermani S, et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 2005 ; 307 : 1450–1454. [CrossRef] [PubMed]
  7. Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 2006 ; 82 : 775–793. [CrossRef]
  8. Paine ML, Snead ML. Protein interactions during assembly of the enamel organic extracellular matrix. J Bone Miner Res 1997 ; 12 : 221–227. [CrossRef] [PubMed]
  9. Haruyama N, Hatakeyama J, Moriyama K, Kulkarni AB. Amelogenins: multi-functional enamel matrix proteins and their binding partners. J Oral Biosci 2011 ; 53 : 257–266. [CrossRef] [PubMed]
  10. Mitani K, Haruyama N, Hatakeyama J, Igarashi K. Amelogenin splice isoforms stimulate chondrogenic differentiation of ATDC5 cells. Oral Dis 2013 ; 19 : 169–179. [CrossRef] [PubMed]
  11. Jacques J, Hotton D, De la Dure-Molla M, et al. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS One 2014 ; 94 : e99626. [CrossRef]
  12. Jacques J, Hotton D, Asselin A, et al. Ameloblastin as a putative marker of specific bone compartments. Connect Tissue Res 2014 ; 55 : 117–120. [CrossRef] [PubMed]
  13. Molla M, Descroix V, Aïoub M, et al. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice. Am J Pathol 2010 ; 177 : 2516–2526. [CrossRef] [PubMed]
  14. Dong X, Shen B, Ruan N, et al. Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochem Cell Biol 2014 ; 6 : 657–665. [CrossRef]
  15. Michon F. Les cellules souches épithéliales dentaires exprimant Sox2 participent au renouvellement de l’incisive de souris. Med Sci (Paris) 2013 ; 4 : 341–342. [CrossRef] [EDP Sciences]
  16. Simmer JP, Papagerakis P, Smith CE, et al. Regulation of dental enamel shape and hardness. J Dent Res 2010 ; 89 : 1024–1038. [CrossRef] [PubMed]
  17. Robinson C. Enamel maturation: a brief background with implications for some enamel dysplasias. Front Physiol 2014 ; 5 : 388. [CrossRef] [PubMed]
  18. Kawasaki K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol 2009 ; 219 : 147–157. [CrossRef] [PubMed]
  19. Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol 1988 ; 17 : 547–553. [CrossRef]
  20. Molla M, Bailleul-Forestier I, Artaud C, et al. Odontogénétique. EMC - Médecine buccale, 2008 : 44 p.
  21. Poulter JA, Murillo G, Brookes SJ, et al. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet 2014 : 23 : 5317–5324. [CrossRef] [PubMed]
  22. Salido EC, Yen PH, Koprivnikar K, et al. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am J Hum Genet 1992 ; 50 : 303–316. [PubMed]
  23. Barron MJ, Brookes SJ, Kirkham J, et al. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta. Hum Mol Genet 2010 ; 19 : 1230–1247. [CrossRef] [PubMed]
  24. De la Dure-Molla M, Quentric M, Yamaguti PM, et al. Pathognomonic oral profile of enamel renal syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis 2014 ; 9 : 84. [CrossRef] [PubMed]
  25. Houari S, Wurtz T, Ferbus D, et al. Asporin and the mineralization process in fluoride-treated rats. J Bone Miner Res 2014 ; 29 : 1446–1455. [CrossRef] [PubMed]
  26. Spira A. La prévention en France, 2004 : éléments de réflexion. Med Sci (Paris) 2004 ; 20 : 926–928. [CrossRef] [EDP Sciences] [PubMed]
  27. Jälevik B. Prevalence and diagnosis of molar-incisor-hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent 2010 ; 11 : 59–64. [CrossRef] [PubMed]
  28. Jedeon K, De la Dure-Molla M, Brookes SJ, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol 2013 ; 183 : 108–118. [CrossRef] [PubMed]
  29. Jedeon K, Loiodice S, Marciano M, et al. Estrogen and bisphenol A affect male rat enamel formation and promote ameloblast proliferation. Endocrinology 2014 ; 155 : 3365–3375. [CrossRef] [PubMed]
  30. Varayoud J, Ramos JG, Bosquiazzo VL, et al. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology 2011 ; 152 : 1101–1111. [CrossRef] [PubMed]
  31. De Coster S, Van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012 ; 2012 : 713696. [CrossRef] [PubMed]
  32. Wald T, Bednárová L, Osiˇcka R, et al. Biophysical characterization of recombinant human ameloblastin. Eur J Oral Sci 2011 ; 119 : 261–269. [CrossRef] [PubMed]
  33. He X, Wu S, Martinez-Avila O, et al. Self-aligning amelogenin nanoribbons in oil-water system. J Struct Biol 2011 ; 174 : 203–212. [CrossRef] [PubMed]
  34. Fan Y, Sun Z, Wang R, et al. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials 2007 ; 28 : 3034–3042. [CrossRef] [PubMed]
  35. Haze A, Taylor AL, Haegewald S, et al. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis. J Cell Mol Med 2009 ; 13 : 1110–1124. [CrossRef] [PubMed]
  36. Warotayanont R, Frenkel B, Snead ML, Zhou Y. Leucine-rich amelogenin peptide induces osteogenesis by activation of the Wnt pathway. Biochem Biophys Res Commun 2009 ; 387 : 558–563. [CrossRef] [PubMed]
  37. Hatakeyama J, Sreenath T, Hatakeyama Y, et al. The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice. J Biol Chem 2003 ; 278 : 35743–3578. [CrossRef] [PubMed]
  38. Lu X, Ito Y, Kulkarni A, et al. Ameloblastin-rich enamel matrix favors short and randomly oriented apatite crystals. Eur J Oral Sci 2011 ; 119 : 254–256. [CrossRef] [PubMed]
  39. Vowden P, Romanelli M, Peter R, et al. The effect of amelogenins (Xelma) on hard-to-heal venous leg ulcers. Wound Repair Regen 2006 ; 14 : 240–246. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.