Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 980 - 990
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011012
Publié en ligne 10 novembre 2014
  1. Fuchs JL, Schwark HD. Neuronal primary cilia: a review. Cell Biol Int 2004 ; 28 : 111–118. [CrossRef] [PubMed]
  2. Louvi A, Grove EA. Cilia in the CNS: The quiet organelle claims center stage. Neuron 2011 ; 69 : 1046–1060. [CrossRef] [PubMed]
  3. Bloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol 2009 ; 94 : 2–52. [CrossRef]
  4. Han YG, Alvarez-Buylla A. Role of primary cilia in brain development and cancer. Curr Opin Neurobiol 2010 ; 20 : 58–67. [CrossRef] [PubMed]
  5. Willaredt MA, Tasouri E, Tucker KL. Primary cilia and forebrain development. Mech Dev 2013 ; 130 : 373–380. [CrossRef] [PubMed]
  6. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genom Human Genet 2006 ; 7 : 125–148. [CrossRef]
  7. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 2009 ; 151C : 281–295. [CrossRef] [PubMed]
  8. Baker K, Beales PL. Abnormalities of the central nervous system across the ciliopathy spectrum. In : Tucker KL, Caspary T, eds. Cilia and nervous system development and function, 2013 New York : Springer, : 229–273. [CrossRef]
  9. Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 2008 ; 9 : 678–685. [CrossRef] [PubMed]
  10. Norris DP, Grimes DT. Mouse models of ciliopathies: the state of the art. Dis Model Mech 2012 ; 5 : 299–312. [CrossRef] [PubMed]
  11. Murdoch JN, Copp AJ. The relationship between Sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res Part A: Clin Mol Teratol 2010 ; 88 : 633–652. [CrossRef]
  12. Copp AJ, Greene NDE, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003 ; 4 : 784–793. [CrossRef] [PubMed]
  13. Ribes V, Briscoe J. Establishing and interpreting graded sonic hedgehog signaling during vertebrate neural tube patterning: The role of negative feedback. Cold Spring Harb Perspect Biol 2009 ; 1 : a002014. [CrossRef]
  14. Goetz SCS, Ocbina PJRP, Anderson KVK. The primary cilium as a Hedgehog Signal transduction machine. Methods Cell Biol 2008 ; 94 : 199–222. [CrossRef]
  15. Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 2006 ; 133 : 3–14. [CrossRef] [PubMed]
  16. May SRS, Ashique AMA, Karlen MM, et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 2005 ; 287 : 378–389. [CrossRef] [PubMed]
  17. Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, et al. Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol 2009 ; 325 : 24–32. [CrossRef] [PubMed]
  18. Willaredt MA, Hasenpusch-Theil K, Gardner HAR, et al. A crucial role for primary cilia in cortical morphogenesis. J Neurosci 2008 ; 28 : 12887–12900. [CrossRef] [PubMed]
  19. Stottmann RW, Tran PV, Turbe-Doan A, Beier DR. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol 2009 ; 335 : 166–178. [CrossRef] [PubMed]
  20. Besse L, Neti M, Anselme I, et al. Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing. Development 2011 ; 138 : 2079–2088. [CrossRef] [PubMed]
  21. Wilson SL, Wilson JP, Wang C, et al. Primary cilia and Gli3 activity regulate cerebral cortical size. Dev Neurobiol 2012 ; 72 : 1196–1212. [CrossRef] [PubMed]
  22. Magnani D, Hasenpusch-Theil K, Benadiba C, et al. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning. Cereb Cortex 2013 ; 24 : 186–198. [CrossRef]
  23. Böse J, Grotewold L, Rüther U. Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 2002 ; 11 : 1129–1135. [CrossRef] [PubMed]
  24. Chi L, Galtseva A, Chen L, et al. Kif3a controls murine nephron number via GLI3 repressor, cell survival, and gene expression in a lineage-specific manner. PLoS One 2013 ; 8 : e65448. [CrossRef] [PubMed]
  25. Tran PV, Haycraft CJ, Besschetnova TY, et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 2008 ; 40 : 403–410. [CrossRef] [PubMed]
  26. Goetz SC, Liem KF Jr, Anderson KV. The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 2012 ; 151 : 847–858. [CrossRef] [PubMed]
  27. Kim S, Tsiokas L. Cilia and cell cycle re-entry: More than a coincidence. cell cycle 2011 ; 10 : 2683–2690. [CrossRef] [PubMed]
  28. Chizhikov VV, Davenport J, Zhang Q, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 2007 ; 27 : 9780–9789. [CrossRef] [PubMed]
  29. Spassky N, Han YG, Aguilar A, et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 2008 ; 317 : 246–259. [CrossRef] [PubMed]
  30. Aguilar A, Meunier A, Strehl L, et al. Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome. Proc Natl Acad Sci USA 2012 ; 109 : 16951–16956. [CrossRef]
  31. Paridaen JTML, Wilsch-Bräuninger M, Huttner WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. cell 2013 ; 155 : 333–344. [CrossRef] [PubMed]
  32. Anderson CT, Stearns T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 2009 ; 19 : 1498–1502. [CrossRef] [PubMed]
  33. Wang X, Tsai JW, Imai JH, et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009 ; 461 : 947–955. [CrossRef] [PubMed]
  34. Wilsch-Brauninger M, Peters J, Paridaen JTML, Huttner WB. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 2011 ; 139 : 95–105. [CrossRef] [PubMed]
  35. Das RM, Storey KG. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 2014 ; 343 : 200–204. [CrossRef] [PubMed]
  36. Lehtinen MK, Zappaterra MW, Chen X, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011 ; 69 : 893–905. [CrossRef] [PubMed]
  37. Dubreuil V, Marzesco AM, Corbeil D, et al. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 2007 ; 176 : 483–495. [CrossRef] [PubMed]
  38. Higginbotham H, Guo J, Yokota Y, et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 2013 ; 16 : 1000–1007. [CrossRef] [PubMed]
  39. Kondo S, Sato-Yoshitake R, Noda Y, et al. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 1994 ; 125 : 1095–1107. [CrossRef] [PubMed]
  40. Delaval B, Delaval B, Bright A, et al. The cilia protein IFT88 is required for spindle orientation in mitosis. Nature 2011 ; 13 : 461–468.
  41. Higginbotham H, Eom TY, Mariani LE, et al. Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell 2012 ; 23 : 925–938. [CrossRef] [PubMed]
  42. Baudoin J-P, Viou L, Launay PS, et al. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. neuron 2012 ; 76 : 1108–1122. [CrossRef] [PubMed]
  43. Molyneaux BJB, Arlotta PP, Menezes JRLJ, Macklis JDJ. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007 ; 8 : 427–437. [CrossRef] [PubMed]
  44. Donahoo A-LS, Richards LJ. Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 2009 ; 16 : 127–142. [CrossRef] [PubMed]
  45. Benadiba C, Magnani D, Niquille M, et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 2012 ; 8 : e1002606. [CrossRef] [PubMed]
  46. Tadenev ALD, Kulaga HM, May-Simera HL, et al. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci USA 2011 ; 108 : 10320–10325. [CrossRef]
  47. Ferland RJR, Eyaid WW, Collura RVR, et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 2004 ; 36 : 1008–1013. [CrossRef] [PubMed]
  48. Poretti A, Boltshauser E, Loenneker T, et al. Diffusion tensor imaging in Joubert syndrome. Am J Neuroradiol 2007 ; 28 : 1929–1933. [CrossRef]
  49. Spassky NN, Merkle FTF, Flames NN, et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 2005 ; 25 : 10–18. [CrossRef] [PubMed]
  50. Narita K, Kawate T, Kakinuma N, Takeda S. Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium. Traffic 2010 ; 11 : 287–301. [CrossRef] [PubMed]
  51. Banizs B. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 2005 ; 132 : 5329–5339. [CrossRef] [PubMed]
  52. Carter CS, Vogel TW, Zhang Q, et al. Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 2012 ; 18 : 1797–1804. [CrossRef] [PubMed]
  53. Lancaster MA, Gopal DJ, Kim J, et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 2011 ; 17 : 726–731. [CrossRef] [PubMed]
  54. Kumamoto N, Gu Y, Wang J, et al. A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 2012 ; 15 : 399–405–S1. [CrossRef] [PubMed]
  55. Guadiana SM, Semple-Rowland S, Daroszewski D, et al. Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase. J Neurosci 2013 ; 33 : 2626–2638. [CrossRef] [PubMed]
  56. Han Y-G, Spassky N, Romaguera-Ros M, et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 2008 ; 11 : 277–284. [CrossRef] [PubMed]
  57. Breunig JJJ, Sarkisian MRM, Arellano JIJ, et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA 2008 ; 105 : 13127–13132. [CrossRef]
  58. Bishop GA, Berbari NF, Lewis J, Mykytyn K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 2007 ; 505 : 562–571. [CrossRef] [PubMed]
  59. Green JA, Gu C, Mykytyn K. Heteromerization of ciliary G protein-coupled receptors in the mouse brain. PLoS One 2012 ; 7 : e46304. [CrossRef] [PubMed]
  60. Davenport JR, Watts AJ, Roper VC, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007 ; 17 : 1586–1594. [CrossRef] [PubMed]
  61. Loktev AV, Zhang Q, Beck JS, et al. A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev Cell 2008 ; 15 : 854–865. [CrossRef] [PubMed]
  62. Sang L, Miller JJ, Corbit KC, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011 ; 145 : 513–528. [CrossRef] [PubMed]
  63. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009 ; 32 : 149–184. [CrossRef] [PubMed]
  64. Marín O, Ge X, Tsai LH. Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2010 ; 2 : a001834.
  65. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed]
  66. Benmerah A. La poche ciliaire : fruit des liaisons du centrosome avec le trafic vésiculaire. Med Sci (Paris) 2014 ; 30 : 962–967. [CrossRef] [EDP Sciences] [PubMed]
  67. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed]
  68. Métin C. Cils et migration neuronale. Med Sci (Paris) 2014 ; 30 : 991–995. [CrossRef] [EDP Sciences] [PubMed]
  69. Delgehyr N, Spassky N. Cil primaire, cycle cellulaire et prolifération. Med Sci (Paris) 2014 ; 30 : 976–979. [CrossRef] [EDP Sciences] [PubMed]
  70. Taulet N, Delaval B. De nouvelles fonctions extraciliaires pour les protéines ciliaires. Quelles conséquences sur l’apparition de ciliopathies ? Med Sci (Paris) 2014 ; 30 : 1040–1050. [CrossRef] [EDP Sciences] [PubMed]
  71. Chennen K, Scerbo MJ, Dollfus H, et al. BBS : cils et obésité ; de la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.