Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 10, Octobre 2014
Page(s) 864 - 873
Section M/S Revues
Publié en ligne 14 octobre 2014
  1. Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984 ; 311 : 29–33. [CrossRef] [PubMed] [Google Scholar]
  2. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984 ; 122 : 1450–1459. [CrossRef] [PubMed] [Google Scholar]
  3. Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987 ; 327 : 239–242. [CrossRef] [PubMed] [Google Scholar]
  4. Weidner KM, Arakaki N, Hartmann G, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 1991 ; 88 : 7001–7005. [CrossRef] [Google Scholar]
  5. Gherardi E, Birchmeier W, Birchmeier C, Woude GV. Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012 ; 12 : 89–103. [CrossRef] [PubMed] [Google Scholar]
  6. Gherardi E, Youles ME, Miguel RN, et al. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 2003 ; 100 : 12039–12044. [CrossRef] [Google Scholar]
  7. Schiering N, Knapp S, Marconi M, et al. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci USA 2003 ; 100 : 12654–12659. [CrossRef] [Google Scholar]
  8. Gherardi E, Sandin S, Petoukhov MV, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci USA 2006 ; 103 : 4046–4051. [CrossRef] [Google Scholar]
  9. Andermarcher E, Surani MA, Gherardi E. Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev Genet 1996 ; 18 : 254–266. [CrossRef] [PubMed] [Google Scholar]
  10. Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995 ; 373 : 702–705. [CrossRef] [PubMed] [Google Scholar]
  11. Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995 ; 373 : 699–702. [CrossRef] [PubMed] [Google Scholar]
  12. Bladt F, Riethmacher D, Isenmann S, et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995 ; 376 : 768–771. [CrossRef] [PubMed] [Google Scholar]
  13. Calvi C, Podowski M, Lopez-Mercado A, et al. Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung. PLoS Genet 2013 ; 9 : e1003228. [CrossRef] [PubMed] [Google Scholar]
  14. Lamballe F, Genestine M, Caruso N, et al. Pool-specific regulation of motor neuron survival by neurotrophic support. J Neurosci 2011 ; 31 : 11144–11158. [CrossRef] [PubMed] [Google Scholar]
  15. Huh CG, Factor VM, Sanchez A, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 2004 ; 101 : 4477–4482. [CrossRef] [Google Scholar]
  16. Maina F, Casagranda F, Audero E, et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 1996 ; 87 : 531–542. [CrossRef] [PubMed] [Google Scholar]
  17. Royal I, Lamarche-Vane N, Lamorte L, et al. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000 ; 11 : 1709–1725. [CrossRef] [PubMed] [Google Scholar]
  18. Moumen A, Ieraci A, Patane S, et al. Met signals hepatocyte survival by preventing Fas-triggered FLIP degradation in a PI3k-Akt-dependent manner. Hepatology 2007 ; 45 : 1210–1217. [CrossRef] [PubMed] [Google Scholar]
  19. Furlan A, Stagni V, Hussain A, et al. Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ 2011 ; 18 : 1608–1616. [CrossRef] [PubMed] [Google Scholar]
  20. Peschard P, Fournier TM, Lamorte L, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001 ; 8 : 995–1004. [CrossRef] [PubMed] [Google Scholar]
  21. Hashigasako A, Machide M, Nakamura T, Matsumoto K. Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 2004 ; 279 : 26445–26452. [CrossRef] [PubMed] [Google Scholar]
  22. Tulasne D, Deheuninck J, Lourenco FC, et al. Proapoptotic function of the MET tyrosine kinase receptor through caspase cleavage. Mol Cell Biol 2004 ; 24 : 10328–10339. [CrossRef] [PubMed] [Google Scholar]
  23. Ancot F, Leroy C, Muharram G, et al. Shedding-generated Met receptor fragments can be routed to either the proteasomal or the lysosomal degradation pathway. Traffic 2012 ; 13 : 1261–1272. [CrossRef] [PubMed] [Google Scholar]
  24. Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol 2008 ; 182 : 855–863. [CrossRef] [PubMed] [Google Scholar]
  25. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 2001 ; 107 : 643–654. [CrossRef] [PubMed] [Google Scholar]
  26. Liu Y, Chattopadhyay N, Qin S, et al. Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development 2009 ; 136 : 843–853. [CrossRef] [PubMed] [Google Scholar]
  27. Orian-Rousseau V, Morrison H, Matzke A, et al. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol Biol Cell 2007 ; 18 : 76–83. [CrossRef] [PubMed] [Google Scholar]
  28. Sadanandam A, Rosenbaugh EG, Singh S, et al. Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvasc Res 2010 ; 79 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  29. Wang X, DeFrances MC, Dai Y, et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol Cell 2002 ; 9 : 411–421. [CrossRef] [PubMed] [Google Scholar]
  30. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997 ; 16 : 68–73. [CrossRef] [PubMed] [Google Scholar]
  31. Joffre C, Barrow R, Menard L, et al. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 2011 ; 13 : 827–837. [CrossRef] [PubMed] [Google Scholar]
  32. Jeffers M, Fiscella M, Webb CP, et al. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 1998 ; 95 : 14417–14422. [CrossRef] [Google Scholar]
  33. Graveel C, Su Y, Koeman J, et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci USA 2004 ; 101 : 17198–17203. [CrossRef] [Google Scholar]
  34. Ponzetto C, Giordano S, Peverali F, et al. c-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 1991 ; 6 : 553–559. [PubMed] [Google Scholar]
  35. Natali PG, Prat M, Nicotra MR, et al. Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 1996 ; 69 : 212–217. [CrossRef] [PubMed] [Google Scholar]
  36. Ian M, Bond JA, Prat M, et al. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 1997 ; 14 : 2417–2423. [CrossRef] [PubMed] [Google Scholar]
  37. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007 ; 316 : 1039–1043. [CrossRef] [PubMed] [Google Scholar]
  38. Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013 ; 3 : 658–673. [CrossRef] [PubMed] [Google Scholar]
  39. Morotti A, Mila S, Accornero P, et al. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 2002 ; 21 : 4885–4893. [CrossRef] [PubMed] [Google Scholar]
  40. Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003 ; 63 : 7345–7355. [PubMed] [Google Scholar]
  41. Gridelli C, Peters S, Sgambato A, et al. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat Rev 2013 ; 40 : 300–306. [CrossRef] [PubMed] [Google Scholar]
  42. Prat M, Crepaldi T, Pennacchietti S, et al. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 1998 ; 111 : 237–247. [PubMed] [Google Scholar]
  43. Merchant M, Ma X, Maun HR, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci USA 2013 ; 110 : E2987–E2996. [CrossRef] [Google Scholar]
  44. Foveau B, Ancot F, Leroy C, et al. Downregulation of the Met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell 2009 ; 20 : 2494–2506. [CrossRef] [Google Scholar]
  45. Matsumoto K, Nakamura T, Sakai K, Nakamura T. Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics 2008 ; 8 : 3360–3370. [CrossRef] [PubMed] [Google Scholar]
  46. Coxon A, Rex K, Meyer S, et al. Soluble c-Met receptors inhibit phosphorylation of c-Met and growth of hepatocyte growth factor: c-Met-dependent tumors in animal models. Mol Cancer Ther 2009 ; 8 : 1119–1125. [CrossRef] [PubMed] [Google Scholar]
  47. Cepero V, Sierra JR, Corso S, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res 2010 ; 70 : 7580–7590. [CrossRef] [PubMed] [Google Scholar]
  48. Bodmer A, Goetsch L, Laurence Favet L, et al. Anticorps et tumeurs solides. Cibles établies et pistes prometteuses. Med Sci (Paris) 2009 ; 25 : 1090–1098. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Furne C, Mehlen P. Les radeaux de la mort : quand les radeaux lipidiques régulent les récepteurs à dépendance. Med Sci (Paris) 2006 ; 22 : 909–910. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.