Numéro
Med Sci (Paris)
Volume 30, Numéro 3, Mars 2014
Pionniers de la découverte de substances naturelles à activité thérapeutique
Page(s) 319 - 328
Section Forum
DOI https://doi.org/10.1051/medsci/20143003021
Publié en ligne 31 mars 2014
  1. Cragg GM, Boyd MR, Cardellina II JH, et al. Role of plants in the National Cancer Institute drug discovery and development program. In : Kinghorn AD, Balandrin MF, eds. Human medicinal agents from plants, chapter 7. ACS Symposium Series 534, 1993. [Google Scholar]
  2. Storad CJ. Cures from the deep. Arizona State 1990 ; 22–26. [Google Scholar]
  3. Chapman AD. Numbers of living species in Australia and the world, 2nd ed. Canberra, Australia : Report for the Australian Biological Resources Study, 2009 : 84 p. [Google Scholar]
  4. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012 ; 75 : 311–335. [CrossRef] [PubMed] [Google Scholar]
  5. Abraham I, El Sayed K, Chen ZS, Guo H. Current status on marine products with reversal effect on cancer multidrug resistance. Mar Drugs 2012 ; 10 : 2312–2321. [CrossRef] [PubMed] [Google Scholar]
  6. Pettit GR, Hartwell JL, Wood HB. Arthropod antineoplastic agents. Cancer Res 1968 ; 28 : 2168–2169. [PubMed] [Google Scholar]
  7. Pettit GR, Day JF, Hartwell JL, Wood HB. Antineoplastic components of marine animals. Nature 1970 ; 227 : 962–963. [CrossRef] [PubMed] [Google Scholar]
  8. Pettit GR. Arizona State University Cancer Research Institute. In : The American Society of Pharmacognosy, 50 years of progress in natural products research 1959–2009. Madison WI : Omnipress, 2009 : 107–108. [Google Scholar]
  9. Pettit GR, Herald CL, Doubek DL, et al. Isolation and structure of bryostatin 1. J Am Chem Soc 1982 ; 104 : 6846–6848. [CrossRef] [Google Scholar]
  10. Halford B. The Bryostatins’ tale. Chem Eng News 2011 ; 89 : 10–17. [Google Scholar]
  11. Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG. Bryostatins: biological context and biotechnological prospects. Curr Opin Biotech 2010 ; 21 : 834–842. [CrossRef] [Google Scholar]
  12. Keck GE, Poudel YB, Cummins TJ, et al. Total synthesis of bryostatin 1. J Am Chem Soc 2011 ; 133 : 744–747. [CrossRef] [PubMed] [Google Scholar]
  13. Haygood MG, Davidson SK. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of Candidatus Endobugula sertula. Appl Environ Microbiol 1997 ; 63 : 4612–4616. [PubMed] [Google Scholar]
  14. Hongpaisan J, Sun MK, Alkon DL. PKCε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 2011 ; 31 : 630–643. [CrossRef] [PubMed] [Google Scholar]
  15. Beans EJ, Fournogerakis D, Gauntlett C, et al. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo. Proc Natl Acad Sci USA 2013 ; 110 : 11698–11703. [CrossRef] [Google Scholar]
  16. Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 1987 ; 109 : 6883–6885. [CrossRef] [Google Scholar]
  17. Pettit GR, Singh SB, Hogan F, et al. Antineoplastic agents. Part 189. The absolute configuration and synthesis of natural (-)-dolastatin 10. J Am Chem Soc 1989 ; 111 : 5463–5465. [CrossRef] [Google Scholar]
  18. Pettit GR. Progress in the discovery of biosynthetic anticancer drugs. J Nat Prod 1996 ; 59 : 812–821. [CrossRef] [PubMed] [Google Scholar]
  19. Pettit GR. The Dolastatins. In : The American Society of Pharmacognosy, 50 years of progress in natural products research 1959–2009. Madison WI : Omnipress, 2009 : 224–226. [Google Scholar]
  20. Pettit GR, Herald CL, Boyd MR, et al. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 1991 ; 34 : 3339–3340. [CrossRef] [PubMed] [Google Scholar]
  21. Hirata Y, Uemura D. Halichondrins: antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986 ; 58 : 701–710. [CrossRef] [Google Scholar]
  22. Pettit GR, Tan R, Gao F, et al. Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri. J Org Chem 1993 ; 58 : 2538–2543. [CrossRef] [Google Scholar]
  23. Litaudon M, Hart JB, Blunt JW. Isohomohalichondrin B, a new antitumor polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett 1994 ; 35 : 9435–9438. [CrossRef] [Google Scholar]
  24. Aicher TD, Buszek KR, Fang FG, et al. Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 1992 ; 114 : 3162–3164. [CrossRef] [Google Scholar]
  25. Munro HGM, Blunt JW, Dumdei EJ, et al. The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 1999 ; 70 : 15–25. [CrossRef] [PubMed] [Google Scholar]
  26. Bai R, Nguyen TL, Burnett JC, et al. Interactions of halichondrin B and eribulin with tubulin. J Chem Inf Model 2011 ; 51 : 1393–1404. [CrossRef] [PubMed] [Google Scholar]
  27. Twelves C, Cortes J, Vahdat LT, et al. Phase III trials of eribulin mesylate (E7389) in extensively pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer 2010 ; 10 : 160–163. [CrossRef] [PubMed] [Google Scholar]
  28. Pettit GR, Inoue M, Kamano Y, et al. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J Am Chem Soc 1988 ; 110 : 2006–2007. [CrossRef] [Google Scholar]
  29. Fukuzawa S, Matsunaga S, Fusetani N. Isolation of 13 new ritterazines from the tunicate Ritterella tokioka and chemical transformation of ritterazine B. J Org Chem 1997 ; 62 : 4484. [CrossRef] [PubMed] [Google Scholar]
  30. LaCour TG, Guo C, Bhandaru S, et al. Interphylal product splicing: the first total syntheses of cephalostatin 1, the north hemisphere of ritterazine G, and the highly active hybrid analogue, Ritterostatin Gn1n. J Am Chem Soc 1998 ; 120 : 692–707. [CrossRef] [Google Scholar]
  31. Fortner KC, Kato D, Tanaka Y, Shair MD. Enantioselective synthesis of (+)-cephalostatin 1. J Am Chem Soc 2010 ; 132 : 275–280. [CrossRef] [PubMed] [Google Scholar]
  32. Rudy A, Lopez-Anton N, Dirsch VM, Vollmar AM. The cephalostatin way of apoptosis. J Nat Prod 2008 ; 71 : 482–486. [CrossRef] [PubMed] [Google Scholar]
  33. Pettit GR, Cichacz ZA, Gao F, et al. Isolation and structure of spongistatin 1. J Org Chem 1993 ; 58 : 1302–1304. [CrossRef] [Google Scholar]
  34. Kobayashi M, Aoki S, Sakai H, et al. Altohyrtin A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett 1993 ; 34 : 2795–2798. [CrossRef] [Google Scholar]
  35. Fusetani N, Shinoda K, Matsunaga S. Bioactive marine metabolites. 48. Cinachyrolide A: a potent cytotoxic macrolide possessing two spiro ketals from marine sponge Cinachyra sp. J Am Chem Soc 1993 ; 115 : 3977–3981. [CrossRef] [Google Scholar]
  36. Bai R, Taylor GF, Cichacz ZA, et al. The spongistatins, potent cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the vinca domain. Biochemistry 1995 ; 34 : 9714–9721. [CrossRef] [PubMed] [Google Scholar]
  37. Guo J, Duffy KJ, Stevens KL, et al. Total synthesis of altohyrtin A (spongistatin 1): part 1. Angewandte Chemie International Edition 1998 ; 37 : 187–190. [CrossRef] [Google Scholar]
  38. Hayward MM, Roth RM, Duffy KJ, et al. Total synthesis of altohyrtin A (spongistatin 1) : part 2. Angewandte Chemie International Edition 1998 ; 37 : 190–196. [CrossRef] [Google Scholar]
  39. Ball M, Gaunt MJ, Hook DF, et al. Total synthesis of spongistatin 1: a synthetic strategy exploiting its latent pseudo-symmetry. Angew Chem Int Ed 2005 ; 44 : 5433–5438. [CrossRef] [Google Scholar]
  40. Smith AB, III, Tomioka T, Risatti CA, et al. Gram-scale synthesis of (+)-spongistatin 1: development of an improved, scalable synthesis of the F-ring subunit, fragment union, and final elaboration. Org Lett 2008 ; 10 : 4359–4362. [CrossRef] [PubMed] [Google Scholar]
  41. Qi Y, Ma S. The medicinal potential of promising marine macrolides with anticancer activity. Chem Med Chem 2011 ; 6 : 399–409. [CrossRef] [Google Scholar]
  42. Xu Q, Huang KC, Tendyke K, et al. In vitro and in vivo anticancer activity of (+)-spongistatin 1. Anticancer Res 2011 ; 31 : 2773–2779. [PubMed] [Google Scholar]
  43. Pettit GR, Cragg GM, Herald DL, et al. Isolation, structure of combretastatin. Can J Chem 1982 ; 60 : 1374. [CrossRef] [Google Scholar]
  44. Annapurna GS, Deshpande VH. Synthesis of (±) combretastatin. Synth Commun 1983 ; 13 : 1075–1082. [CrossRef] [Google Scholar]
  45. Pettit GR, Singh SB, Cragg GM. Antineoplastic agents. 113. Synthesis of natural (-)-combretastatin. J Org Chem 1985 ; 50 : 3404–3406. [CrossRef] [Google Scholar]
  46. Pettit GR, Temple CJR, Nnarayanan VL, et al. Antineoplastic agent 322. Synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des 1995 ; 10 : 299–309. [PubMed] [Google Scholar]
  47. Pettit GR, Pinney KG. The Combretastatins. In : The American Society of Pharmacognosy, 50 years of progress in natural products research 1959–2009. Madison WI : Omnipress, 2009 : 217–219. [Google Scholar]
  48. Siemann DW, Chaplin DJ, Walicke PA. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 2009 ; 18 : 189–197. [CrossRef] [PubMed] [Google Scholar]
  49. Ibrahim MA, Do DV, Sepah YJ, et al. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety, efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol 2013 ; 14 : 7. [CrossRef] [PubMed] [Google Scholar]
  50. Pettit GR, Gaddamidi V, Cragg GM, et al. Isolation and structure of pancratistatin. J Chem Soc Chem Commun 1984 ; 1693–1694. [CrossRef] [Google Scholar]
  51. Ceriotti G. Narciclasine: an antimitotic substance from Narcissus bulbs. Nature 1967 ; 213 : 595–596. [CrossRef] [PubMed] [Google Scholar]
  52. Danishefsky SJ, Lee JY. Total synthesis of (+)-Pancratistatin. J Am Chem Soc 1989 ; 111 : 4829–4837. [CrossRef] [Google Scholar]
  53. McLachlan A, Kekre N, McNulty J, Pandey S. Pancratistatin: a natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis 2005 ; 10 : 619–630. [CrossRef] [PubMed] [Google Scholar]
  54. Griffin C, Hamm C, McNulty J, Pandey S., Pancratistatin induces apoptosis in clinical leukemia samples with minimal effect on non-cancerous peripheral blood mononuclear cells. Cancer Cell Int 2010 ; 10 : 6. [CrossRef] [PubMed] [Google Scholar]
  55. Da Silva PPJ, Meijer L. Recherche de substances naturelles à activité thérapeutique. Pierre Potier (1934–2006). Med Sci (Paris) 2012 ; 28 : 534–542. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.