Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 2, Février 2014
Page(s) 173 - 178
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143002015
Publié en ligne 24 février 2014
  1. Terranova R. L’hétérochromatine constitutive dans tous ses états. Med Sci (Paris) 2008 ; 24 : 720–724. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Millau J-F, Gaudreau L. CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol 2011 ; 89 : 505–513. [CrossRef] [PubMed] [Google Scholar]
  3. Hazelrigg T, Levis R, Rubin GM. Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell 1984 ; 36 : 469–481. [CrossRef] [PubMed] [Google Scholar]
  4. Gehring WJ, Klemenz R, Weber U, Kloter U. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation. EMBO J 1984 ; 3 : 2077–2085. [PubMed] [Google Scholar]
  5. Gottschling DE, Aparicio OM, Billington BL, Zakian VA., Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 1990 ; 63 : 751–762. [CrossRef] [PubMed] [Google Scholar]
  6. Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 2008 ; 90 : 93–107. [CrossRef] [PubMed] [Google Scholar]
  7. Pryde FE, Louis EJ. Limitations of silencing at native yeast telomeres. EMBO J 1999 ; 18 : 2538–2550. [CrossRef] [PubMed] [Google Scholar]
  8. Fourel G, Revardel E, Koering CE, Gilson E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J 1999 ; 18 : 2522–2537. [CrossRef] [PubMed] [Google Scholar]
  9. Guillemette B, Gaudreau L. H2A.Z : un variant d’histone qui orne les promoteurs des gènes. Med Sci (Paris) 2006 ; 22 : 941–946. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Nakayama J, Rice JC, Strahl BD, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001 ; 292 : 110–113. [CrossRef] [PubMed] [Google Scholar]
  11. Kanoh J, Sadaie M, Urano T, Ishikawa F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 2005 ; 15 : 1808–1819. [CrossRef] [PubMed] [Google Scholar]
  12. Wright WE, Shay JW. Telomere positional effects and the regulation of cellular senescence. Trends Genet 1992 ; 8 : 193–197. [CrossRef] [PubMed] [Google Scholar]
  13. Sprung CN, Sabatier L, Murnane JP. Effect of telomere length on telomeric gene expression. Nucleic Acids Res 1996 ; 24 : 4336–4340. [CrossRef] [PubMed] [Google Scholar]
  14. Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science 2001 ; 292 : 2075–2077. [CrossRef] [PubMed] [Google Scholar]
  15. Koering CE, Pollice A, Zibella MP, et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002 ; 3 : 1055–1061. [CrossRef] [PubMed] [Google Scholar]
  16. Tennen RI, Bua DJ, Wright WE, Chua KF., SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2011 ; 2 : 433. [CrossRef] [PubMed] [Google Scholar]
  17. Esnault G, Majocchi S, Martinet D, et al. Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing. Mol Cell Biol 2009 ; 29 : 2409–2418. [CrossRef] [PubMed] [Google Scholar]
  18. Ferrari S, Simmen KC, Dusserre Y, et al. Chromatin domain boundaries delimited by a histone-binding protein in yeast. J Biol Chem 2004 ; 279 : 55520–55530. [CrossRef] [PubMed] [Google Scholar]
  19. Ning Y, Xu JF, Li Y, et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum Mol Genet 2003 ; 12 : 1329–1336. [CrossRef] [PubMed] [Google Scholar]
  20. Ofir R, Wong AC, McDermid HE, et al. Position effect of human telomeric repeats on replication timing. Proc Natl Acad Sci USA 1999 ; 96 : 11434–11439. [CrossRef] [Google Scholar]
  21. Lou Z, Wei J, Riethman H, et al. Telomere length regulates ISG15 expression in human cells. Aging 2009 ; 1 : 608–621. [PubMed] [Google Scholar]
  22. Azzalin CM, Reichenbach P, Khoriauli L, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007 ; 318 : 798–801. [CrossRef] [PubMed] [Google Scholar]
  23. Nergadze SG, Farnung BO, Wischnewski H, et al. CpG-island promoters drive transcription of human telomeres. RNA 2009 ; 15 : 2186–2194. [CrossRef] [PubMed] [Google Scholar]
  24. Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol 2012 ; 19 : 948–956. [CrossRef] [PubMed] [Google Scholar]
  25. Deng Z, Wang Z, Stong N, et al. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J 2012 ; 31 : 4165–4178. [CrossRef] [PubMed] [Google Scholar]
  26. Fu Y, Sinha M, Peterson CL, Weng Z., The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 2008 ; 4 : e1000138. [CrossRef] [PubMed] [Google Scholar]
  27. Stadler G, Rahimov F, King OD, et al. Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nat Struct Mol Biol 2013 ; 20 : 671–678. [CrossRef] [PubMed] [Google Scholar]
  28. Ottaviani A, Schluth-Bolard C, Rival-Gervier S, et al. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF. EMBO J 2009 ; 28 : 2428–2436. [CrossRef] [PubMed] [Google Scholar]
  29. Ottaviani A, Rival-Gervier S, Boussouar A, et al. The D4Z4 macrosatellite repeat acts as a CTCF, A-type lamins-dependent insulator in facio-scapulo-humeral dystrophy. PLoS Genet 2009 ; 5 : e1000394. [CrossRef] [PubMed] [Google Scholar]
  30. Deng Z, Norseen J, Wiedmer A, et al. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 2009 ; 35 : 403–413. [CrossRef] [PubMed] [Google Scholar]
  31. Chaib H, Prébet T, Vey N, Collette Y. Histone méthyltransférases : une nouvelle classe de cibles thérapeutiques dans le traitement du cancer ? Med Sci (Paris) 2011 ; 27 : 725–732. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.