Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 2, Février 2014
Page(s) 139 - 141
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20143002008
Publié en ligne 24 février 2014
  1. Mouillet-Richard S, Ermonval M, Chebassier C, et al. Signal transduction through prion protein. Science 2000 ; 289 : 1925–1928. [CrossRef] [PubMed] [Google Scholar]
  2. Schneider B, Pietri M, Pradines E, et al. Understanding the neurospecificity of Prion protein signaling. Front Biosci 2011 ; 16 : 169–186. [CrossRef] [Google Scholar]
  3. Westergard L, Turnbaugh JA, Harris DA. A naturally occurring, C-terminal fragment of the prion protein delays disease and acts as a dominant negative inhibitor of PrPSc formation. J Biol Chem 2011 ; 286 : 44234–44242. [CrossRef] [PubMed] [Google Scholar]
  4. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 2001 ; 276 : 37743–37746. [CrossRef] [PubMed] [Google Scholar]
  5. Yadavalli R, Guttmann RP, Seward T, et al. Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 2004 ; 279 : 21948–21956. [CrossRef] [PubMed] [Google Scholar]
  6. Pietri M, Dakowski C, Hannaoui S, et al. PDK1 decreases TACE-mediated alpha-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat Med 2013 ; 19 : 1124–1131. [CrossRef] [PubMed] [Google Scholar]
  7. Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 2003 ; 74 : 342–352. [CrossRef] [PubMed] [Google Scholar]
  8. De Strooper B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 2010 ; 90 : 465–494. [CrossRef] [PubMed] [Google Scholar]
  9. Sennvik K, Fastbom J, Blomberg M, et al. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 2000 ; 278 : 169–172. [CrossRef] [PubMed] [Google Scholar]
  10. Pietri M, Caprini A, Mouillet-Richard S, et al. Overstimulation of PrPC signaling pathways by prion peptide 106–126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem 2006 ; 281 : 28470–28479. [CrossRef] [PubMed] [Google Scholar]
  11. Pradines E, Hernandez-Rapp J, Villa-Diaz A, et al. Pathogenic prions deviate PrP(C) signaling in neuronal cells, impair A-beta clearance. Cell Death Dis 2013 ; 4 : e456. [CrossRef] [PubMed] [Google Scholar]
  12. Lauren J, Gimbel DA, Nygaard HB, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009 ; 457 : 1128–1132. [CrossRef] [PubMed] [Google Scholar]
  13. Benilova I, De Strooper B. Prion protein in Alzheimer’s pathogenesis: a hot and controversial issue. EMBO Mol Med 2010 ; 2 : 289–290. [CrossRef] [PubMed] [Google Scholar]
  14. Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012 ; 15 : 1227–1235. [CrossRef] [PubMed] [Google Scholar]
  15. Larson M, Sherman MA, Amar F, et al. The complex PrP(c)-Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 2012 ; 32 : 16857–1671a. [CrossRef] [PubMed] [Google Scholar]
  16. Gill ON, Spencer Y, Richard-Loendt A, et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. Br Med J 2013 ; 347 : f5675. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.