Accès gratuit
Cet article est une note pour : [cet article]

Med Sci (Paris)
Volume 30, Numéro 1, Janvier 2014
Page(s) 82 - 92
Section Traduction
Publié en ligne 8 octobre 2014
  1. Bailey C, Campbell I. Metformin: the gold standard; a scientific handbook Chichester, UK: Wiley, 2007: 288 p.
  2. Sterne J. Du nouveau dans les antidiabétiques. La NN diméthylamino guanyl guanidine (N.N.D.G.). Maroc Med 1957; 36: 1295–1296.
  3. UKPDS. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–865. [CrossRef] [PubMed]
  4. Stades AM, Heikens JT, Erkelens DW, et al. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Intern Med 2004; 255: 179–187. [CrossRef] [PubMed]
  5. Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998; 6: 47–53. [CrossRef] [PubMed]
  6. Lin HZ, Yang SQ, Chuckaree C, et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 6: 998–1003. [CrossRef] [PubMed]
  7. Marchesini G, Brizi M, Bianchi G, et al. Metformin in non-alcoholic steatohepatitis. Lancet 2001; 358: 893–894. [CrossRef] [PubMed]
  8. Foretz M, Viollet B. Mécanisme d’action hépatique de la metformine dans le diabète de type 2. Med Mal Metab 2009; 3: 48–54.
  9. Foretz M, Viollet B. Mécanisme d’inhibition de la production hépatique de glucose par la metformine. Med Sci (Paris) 2010; 26: 663–666. [CrossRef] [EDP Sciences] [PubMed]
  10. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403. [CrossRef] [PubMed]
  11. Rowan JA, Hague WM, Gao W, et al. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med 2008; 358: 2003–2015. [CrossRef] [PubMed]
  12. Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003; 327: 951–953. [CrossRef] [PubMed]
  13. Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422–1431. [CrossRef] [PubMed]
  14. Argaud D, Roth H, Wiernsperger N, Leverve XM. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem 1993; 213: 1341–1348. [CrossRef] [PubMed]
  15. El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275: 223–228. [CrossRef] [PubMed]
  16. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348: 607–614. [CrossRef] [PubMed]
  17. Logie L, Harthill J, Patel K, et al. Cellular responses to the metal-binding properties of metformin. Diabetes 2012; 61: 1423–1433. [CrossRef] [PubMed]
  18. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174 Foretz M, Taleux N, Guigas B, et al. Régulation du métabolisme énergétique par l’AMPK. Med Sci (Paris) 2006; 22: 381-8.. [CrossRef] [PubMed]
  19. Foretz M, Viollet B. Regulation of hepatic metabolism by AMPK. J Hepatol 2011; 54: 827–829. [CrossRef] [PubMed]
  20. Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642–1646. [CrossRef] [PubMed]
  21. Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355–2369. [CrossRef] [PubMed]
  22. Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494: 256–260. [CrossRef] [PubMed]
  23. Yin M, van der Horst IC, van Melle JP, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011; 301: H459–H468. [CrossRef] [PubMed]
  24. Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 2009; 104: 403–411. [CrossRef] [PubMed]
  25. MacDonald MR, Eurich DT, Majumdar SR, et al. Treatment of type 2 diabetes and outcomes in patients with heart failure: a nested case-control study from the U.K. General practice research database. Diabetes care 2010; 33: 1213–1218. [CrossRef] [PubMed]
  26. Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011; 60: 1770–1778. [CrossRef] [PubMed]
  27. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330 : 1304–1305. [CrossRef] [PubMed]
  28. Beck E, Scheen AJ. Quels bénéfices antitumoraux attendre de la metformine ? Ann Endocrinol (Paris) 2013; 74: 137–147. [CrossRef] [PubMed]
  29. Memmott RM, Mercado JR, Maier CR, et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res 2010; 3 : 1066–1076. [CrossRef]
  30. Viollet B, Foretz M. Metformine et cancer. Du diabète au cancer: de nouvelles perspectives thérapeutiques pour la metformine. Med Mal Metab 2011; 5: 29–37.
  31. Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66 : 10269–10273. [CrossRef] [PubMed]
  32. Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576–3586. [CrossRef] [PubMed]
  33. Huang X, Wullschleger S, Shpiro N, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412: 211–221. [CrossRef] [PubMed]
  34. Ben Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011; 71: 4366–4372. [CrossRef] [PubMed]
  35. Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67: 6745–6752. [CrossRef] [PubMed]
  36. Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009; 460: 103–107. [CrossRef] [PubMed]
  37. Algire C, Moiseeva O, Deschenes-Simard X, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 2012; 5: 536–543. [CrossRef]
  38. Del Barco S, Vazquez-Martin A, Cufi S, et al. Metformin: multi-faceted protection against cancer. Oncotarget 2011; 2: 896–917. [PubMed]
  39. Cerezo M, Tichet M, Abbe P, et al. Metformin blocks melanoma invasion and metastasis development in a AMPK/p53-dependent manner. Mol Cancer Ther 2013; 12: 1605–1615. [CrossRef] [PubMed]
  40. Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27: 3297–3302. [CrossRef] [PubMed]
  41. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511. [CrossRef] [PubMed]
  42. Hwang YP, Jeong HG. Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12- myristate-13-acetate-induced/extracellular signal-regulated kinase/ activator protein-1. Br J Pharmacol 2010; 160: 1195–1211. [CrossRef] [PubMed]
  43. Shackelford DB, Abt E, Gerken L, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158. [CrossRef] [PubMed]
  44. Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 2010; 107 : 21830–21835. [CrossRef]
  45. Paintlia AS, Paintlia MK, Mohan S, et al. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 2013; 183: 526–541. [CrossRef] [PubMed]
  46. Ma TC, Buescher JL, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 2007; 411: 98–103. [CrossRef] [PubMed]
  47. Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11: 23–35. [CrossRef] [PubMed]
  48. Anisimov VN, Berstein LM, Popovich IG, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3: 148–157. [PubMed]
  49. Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 2010; 5: e8758. [CrossRef] [PubMed]
  50. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153: 228–239. [CrossRef] [PubMed]
  51. Razungles J, Jalaguier S, Cavaillès V, Teyssier C. L’effet Warburg: de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013; 11: in press.
  52. Foretz M, Taleux N, Guigas B, et al. Regulation of energy metabolism by AMPK: a novel therapeutic approach for the treatment of metabolic and cardiovascular diseases. Med Sci (Paris) 2006; 22: 381–388. [CrossRef] [EDP Sciences] [PubMed]
  53. Julien LA, Roux PP. mTOR, the mammalian target of rapamycin. Med Sci (Paris) 2010; 26: 1056–1060. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.