Accès gratuit
Cet article a une note : [note]

Med Sci (Paris)
Volume 29, Numéro 11, Novembre 2013
Page(s) 975 - 984
Section M/S Revues
Publié en ligne 20 novembre 2013
  1. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002 ; 296 : 298–300. [CrossRef] [PubMed] [Google Scholar]
  2. Matzinger P. The danger model : a renewed sense of self. Science 2002 ; 296 : 301–305. [CrossRef] [PubMed] [Google Scholar]
  3. Martinon F, Burns K, Tschopp J. The inflammasome : a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002 ; 10 : 417–426. [CrossRef] [PubMed] [Google Scholar]
  4. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis : host cell death and inflammation. Nat Rev Microbiol 2009 ; 7 : 99–109. [CrossRef] [PubMed] [Google Scholar]
  5. Ting JPY, Lovering RC, Alnemri ES, et al. The NLR gene family : a standard nomenclature. Immunity 2008 ; 28 : 285–287. [CrossRef] [PubMed] [Google Scholar]
  6. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010 ; 464 : 1357–1361. [CrossRef] [PubMed] [Google Scholar]
  7. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008 ; 9 : 847–856. [CrossRef] [PubMed] [Google Scholar]
  8. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006 ; 440 : 237–241. [CrossRef] [PubMed] [Google Scholar]
  9. Schattgen SA, Fitzgerald KA. The PYHIN protein family as mediators of host defenses. Immunol Rev 2011 ; 243 : 109–118. [CrossRef] [PubMed] [Google Scholar]
  10. Fernandes-Alnemri T, Yu J-W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009 ; 458 : 509–513. [CrossRef] [PubMed] [Google Scholar]
  11. Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 2011 ; 9 : 363–375. [CrossRef] [PubMed] [Google Scholar]
  12. Satoh T, Kato H, Kumagai Y, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 2010 ; 107 : 1512–1517. [CrossRef] [Google Scholar]
  13. Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 2010 ; 11 : 63–69. [CrossRef] [PubMed] [Google Scholar]
  14. Py BF, Kim MS, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 2013 ; 49 : 331–338. [CrossRef] [PubMed] [Google Scholar]
  15. Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006 ; 440 : 228–232. [CrossRef] [PubMed] [Google Scholar]
  16. Kanneganti TD, Lamkanfi M, Kim YG, et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 2007 ; 26 : 433–443. [CrossRef] [PubMed] [Google Scholar]
  17. Pétrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007 ; 14 : 1583–1589. [CrossRef] [PubMed] [Google Scholar]
  18. Compan V, Baroja-Mazo A, López-Castejón G, et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 2012 ; 37 : 487–500. [CrossRef] [PubMed] [Google Scholar]
  19. Dostert C, Pétrilli V, Bruggen R Van, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008 ; 320 : 674–677. [CrossRef] [PubMed] [Google Scholar]
  20. Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008 ; 9 : 857–865. [CrossRef] [PubMed] [Google Scholar]
  21. Bauernfeind F, Ablasser A, Bartok E, et al. Inflammasomes : current understanding and open questions. Cell Mol Life Sci 2011 ; 68 : 765–783. [CrossRef] [PubMed] [Google Scholar]
  22. Franchi L, Kanneganti T-D, Dubyak GR, et al. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 2007 ; 282 : 18810–18818. [CrossRef] [PubMed] [Google Scholar]
  23. Costa A, Gupta R, Signorino G, et al. Activation of the NLRP3 inflammasome by group B streptococci. J Immunol 2012 ; 188 : 1953–1960. [CrossRef] [PubMed] [Google Scholar]
  24. Tschopp J, Schroder K. NLRP3 inflammasome activation : The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010 ; 10 : 210–215. [CrossRef] [PubMed] [Google Scholar]
  25. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010 ; 11 : 136–140. [CrossRef] [PubMed] [Google Scholar]
  26. Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012 ; 36 : 401–414. [CrossRef] [PubMed] [Google Scholar]
  27. Coers J, Vance RE, Fontana MF, et al. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 2007 ; 9 : 2344–2357. [CrossRef] [PubMed] [Google Scholar]
  28. Abdelaziz DHA, Gavrilin MA, Akhter A, et al. Asc-dependent and independent mechanisms contribute to restriction of legionella pneumophila infection in murine macrophages. Front Microbiol 2011 ; 2 : 18. [PubMed] [Google Scholar]
  29. Kofoed EM, Vance RE. NAIPs : building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol. Bioessays 2012 ; 34 : 589–598. [CrossRef] [PubMed] [Google Scholar]
  30. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011 ; 117 : 3720–3732. [CrossRef] [PubMed] [Google Scholar]
  31. Sahoo M, Ceballos-Olvera I, Barrio L del, et al. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. Sci World J 2011 ; 11 : 2037–2050. [CrossRef] [Google Scholar]
  32. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011 ; 243 : 206–214. [CrossRef] [PubMed] [Google Scholar]
  33. Jamilloux Y, Jarraud S, Lina G, et al. Legionella, légionnellose. Med Sci (Paris) 2012 ; 28 : 639–645. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Bruey J-M, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 2007 ; 129 : 45–56. [CrossRef] [PubMed] [Google Scholar]
  35. Terra JK, Cote CK, France B, et al. Cutting edge : resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J Immunol 2010 ; 184 : 17–20. [CrossRef] [PubMed] [Google Scholar]
  36. Kovarova M, Hesker PR, Jania L, et al. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol 2012 ; 189 : 2006–2016. [CrossRef] [PubMed] [Google Scholar]
  37. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011 ; 145 : 745–757. [CrossRef] [PubMed] [Google Scholar]
  38. Anand PK, Malireddi RKS, Lukens JR, et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012 ; 488 : 389–393. [CrossRef] [PubMed] [Google Scholar]
  39. Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 2012 ; 36 : 464–476. [CrossRef] [PubMed] [Google Scholar]
  40. Vladimer GI, Weng D, Paquette SWM, et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 2012 ; 37 : 96–107. [CrossRef] [PubMed] [Google Scholar]
  41. Jones JW, Kayagaki N, Broz P, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 2010 ; 107 : 9771–9776. [CrossRef] [Google Scholar]
  42. Schmitz N, Kurrer M, Bachmann MF, et al. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 2005 ; 79 : 6441–6448. [CrossRef] [PubMed] [Google Scholar]
  43. Liu B, Mori I, Hossain MJ, et al. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 2004 ; 85 : 423–428. [CrossRef] [PubMed] [Google Scholar]
  44. Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 2010 ; 11 : 404–410. [CrossRef] [PubMed] [Google Scholar]
  45. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009 ; 458 : 514–518. [CrossRef] [PubMed] [Google Scholar]
  46. Rathinam VAK, Fitzgerald KA. Inflammasomes and anti-viral immunity. J Clin Immunol 2010 ; 30 : 632–637. [CrossRef] [PubMed] [Google Scholar]
  47. Nour AM, Reichelt M, Ku C-C, et al. Varicella-zoster virus infection triggers formation of an interleukin-1β (IL-1β)-processing inflammasome complex. J Biol Chem 2011 ; 286 : 17921–17933. [CrossRef] [PubMed] [Google Scholar]
  48. Muruve DA, Pétrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008 ; 452 : 103–107. [CrossRef] [PubMed] [Google Scholar]
  49. Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Med Sci (Paris) 2011 ; 27 : 1019–1024. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Bisbal C, Salehzada T. La RNase L, un acteur essentiel de la réponse cellulaire antivirale. Med Sci (Paris) 2008 ; 24 : 859–864. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Kowalinski E, Louber J, Gerlier D, Cusack S. RIG-I. Un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–138. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Pochet S, Seil M, El Ouaaliti M, Dehaye JP. P2X4 ou P2X7 : lequel de ces deux récepteurs nous fera saliver? Med Sci (Paris) 2013 ; 29 : 509–514. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Garaude J. Levée de l’immunité innée dans le traitement des cancers. Med Sci (Paris) 2013 ; 29 : 985–990. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Pellé KG, Ahouidi AD, Mantel PY. Le rôle des microvésicules dans l’infection palustre. Med Sci (Paris) 2013 ; 29 : 960–962. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.