Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 791 - 799
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298020
Publié en ligne 5 septembre 2013
  1. World Health Organization. Diabetes fact sheet. 2012. Disponible online www.who.int/mediacentre/factsheets/fs312/en/index.html 2012. [Google Scholar]
  2. Haute autorité de santé. Questions/réponses: stratégies médicamenteuses du contrôle glycémique du diabète de type 2. 2012. Disponible online www.has-sante.fr/…/strategie-medicamenteuse-du-controle-glycemique-du-diabete-de-type-2. [Google Scholar]
  3. Garrel D. Comment l’obésité cause le diabète et que peut-on y faire ? 2010. Disponible online www.diabete.qc.ca/html/vivre_avec_diabete/obesite_causes.html. [Google Scholar]
  4. Klimentidis YC, Abrams M, Wang J, et al. Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Hum Genet 2011 ; 129 : 407–418. [CrossRef] [PubMed] [Google Scholar]
  5. Gujral UP, Pradeepa R, Weber MB, et al. Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. Ann NY Acad Sci 2013 ; 13 : 1–13. [Google Scholar]
  6. Warram JH, Krolewski AS. Epidemiology of diabetes mellitus. In: Kahn CR, Weir GC, King GL, et al., eds. Joslin’s Diabetes Mellitus. Boston : Lippincott Williams & Wilkins, 2005 : 115–128. [Google Scholar]
  7. Vaag A, Lund SS. Non-obese patients with type 2 diabetes and prediabetic subjects: distinct phenotypes requiring special diabetes treatment and (or) prevention? Appl Physiol Nutr Metab 2007 ; 32 : 912–920. [CrossRef] [PubMed] [Google Scholar]
  8. Schulz LC. The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci USA 2010 ; 107 : 16757–16758. [CrossRef] [Google Scholar]
  9. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992 ; 35 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  10. Manuel-Apolinar L, Zarate A, Rocha L, et al. Fetal malnutrition affects hypothalamic leptin receptor expression after birth in male mice. Arch Med Res 2010 ; 41 : 240–245. [CrossRef] [PubMed] [Google Scholar]
  11. Sebert S, Dellschaft NS, Chan LL, et al. Maternal nutrient restriction during late gestation and early postnatal growth in sheep differentially reset the control of energy metabolism in the gastric mucosa. Endocrinology 2011 ; 152 : 2816–2826. [CrossRef] [PubMed] [Google Scholar]
  12. Simmons RA. Developmental origins of diabetes: the role of oxidative stress. Best Pract Res Clin Endocrinol Metab 2012 ; 26 : 701–708. [CrossRef] [PubMed] [Google Scholar]
  13. Garofano A, Czernichow P, Bréant B. In utero undernutrition impairs rat β-cell development. Diabetologia 1997 ; 40 : 1231–1234. [CrossRef] [PubMed] [Google Scholar]
  14. Blondeau B, Garofano A, Czernichow P, et al. Age-dependent inability of the endocrine pancreas to adapt to pregnancy: a long-term consequence of perinatal malnutrition in the rat. Endocrinology 1999 ; 140 : 4208–4213. [CrossRef] [PubMed] [Google Scholar]
  15. Garofano A, Czernichow P, Bréant B. Effect of ageing on β-cell mass and function in rats malnourished during the perinatal period. Diabetologia 1999 ; 42 : 711–718. [CrossRef] [PubMed] [Google Scholar]
  16. Gesina E, Tronche F, Herrera P, et al. Dissecting the role of glucocorticoids on pancreas development. Diabetes 2004 ; 53 : 2322–2329. [CrossRef] [PubMed] [Google Scholar]
  17. Sebert S, Sharkey D, Budge H, et al. The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr 2011 ; 94 : S1953–S1958. [CrossRef] [PubMed] [Google Scholar]
  18. Vaag AA, Grunnet LG, Arora GP, et al. The Thrifty Phenotype hypothesis revisited. Diabetologia 2012 ; 55 : 2085–2088. [CrossRef] [PubMed] [Google Scholar]
  19. Getahun D, Nath C, Ananth C, et al. Gestational diabetes in the United States: temporal trends 1989 through 2004. Am J Obstet Gynecol 2008 ; 198 : 525.e1–e5. [CrossRef] [PubMed] [Google Scholar]
  20. Freinkel N. Banting lecture 1980: of pregnancy and progeny. Diabetes 1980 ; 29 : 1023–1035. [CrossRef] [PubMed] [Google Scholar]
  21. Malcolm J. Through the looking glass: gestational diabetes as a predictor of maternal and offspring long-term health. Diabetes Metab Res Rev 2012 ; 28 : 307–311. [CrossRef] [PubMed] [Google Scholar]
  22. Dabelea D, Knowler WC, Pettit DJ. Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J Matern Fetal Med 2000 ; 9 : 83–88. [CrossRef] [PubMed] [Google Scholar]
  23. Aerts L, Van Asche FA. Animal evidence for transgenerational development of diabetes mellitus. J Biochem Cell Biol 2006 ; 38 : 894–903. [CrossRef] [Google Scholar]
  24. Bihoreau MT, Ktorza A, Kinebanyan MF, et al. Impaired glucose homeostasis in adult rats from hyperglycemic mothers. Diabetes 1986 ; 35 : 979–984. [CrossRef] [PubMed] [Google Scholar]
  25. Gauguier D, Bihoreau MT, Picon L, et al. Insulin secretion in adult rats after intrauterine exposure to mild hyperglycemia during late gestation. Diabetes 1991 ; 40 : 109–114. [CrossRef] [PubMed] [Google Scholar]
  26. Marchetti P, Bugliani M, Boggi U, et al. The pancreatic β-cells in human type 2 diabetes. Adv Exp Med Biol 2012 ; 771 : 288–309. [PubMed] [Google Scholar]
  27. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011 ; 11 : 98–107. [CrossRef] [PubMed] [Google Scholar]
  28. Rossmeisl M, Rim JS, Koza RA, et al. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 2003 ; 52 : 1958–1966. [CrossRef] [PubMed] [Google Scholar]
  29. Andrikopoulos S, Massa CM, Aston-Mourney K, et al. Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 2005 ; 187 : 45–53. [CrossRef] [PubMed] [Google Scholar]
  30. Biddinger SB, Almind K, Miyazaki M, et al. Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-Coa desaturase 1, and the development of metabolic syndrome. Diabetes 2005 ; 54 : 1314–1323. [CrossRef] [PubMed] [Google Scholar]
  31. Fearnside JF, Dumas ME, Rothwell AR, et al. Phylometabonomic patterns of adaptation to high fat diet feeding in inbred mice. PLoS One 2008 ; 3 : e1668. [CrossRef] [PubMed] [Google Scholar]
  32. Shepherd PR, Kahn BB. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. N Engl J Med 1999 ; 341 : 248–257. [CrossRef] [PubMed] [Google Scholar]
  33. Goren HJ, Kulkarni RN, Kahn CR. Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology 2004 ; 145 : 3307–3323. [CrossRef] [PubMed] [Google Scholar]
  34. Magnan C, Ktorza A. Production et sécrétion de l’insuline par la cellule β pancréatique. EMC Endocrinol 2005 ; 2 : 241–264. [CrossRef] [Google Scholar]
  35. Bull C, Fenech M. Genome-health nutrigenomics and nutrigenetics: nutritional requirements or “nutriomes” for chromosomal stability and telomere maintenance at the individual level. Proc Nutr Soc 2008 ; 67 : 146–156. [CrossRef] [PubMed] [Google Scholar]
  36. Kaiser N, Nesher R, Donath MY, et al. Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 2005 ; 54 : S137–S144. [CrossRef] [PubMed] [Google Scholar]
  37. Heled Y, Shapiro Y, Shani Y, et al. Physical exercise enhances protein kinase C δ activity and insulin receptor tyrosine phosphorylation in diabetes-prone Psammomys obesus. Metabolism 2003 ; 52 : 1028–1033. [CrossRef] [PubMed] [Google Scholar]
  38. Heled Y, Shapiro Y, Shani Y, et al. Physical exercise enhances hepatic insulin signaling and inhibits phosphoenolpyruvate carboxykinase activity in diabetes-prone Psammomys obesus. Metabolism 2004 ; 53 : 836–841. [CrossRef] [PubMed] [Google Scholar]
  39. Ziv E, Kalman R, Hershkop K, et al. Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinaemic state. Diabetologia 1996 ; 39 : 1269–1275. [CrossRef] [PubMed] [Google Scholar]
  40. Leibowitz G, Ferber S, Apelquist A, et al. IPF1/PDX1 deficiency and β-cell dysfunction in Psammomys obesus, an animal with type2 diabetes. Diabetes 2001 ; 50 : 1799–1806. [CrossRef] [PubMed] [Google Scholar]
  41. Kaiser N, Cerasi E, Leibowitz G. Diet-induced diabetes in the sand rat (Psammomys obesus). Methods Mol Biol 2012 ; 933 : 89–102. [PubMed] [Google Scholar]
  42. Kargar C, Ktorza A. Anatomical versus functional β-cell mass in experimental diabetes. Diabetes Obes Metab 2008 ; 10 : 43–53. [CrossRef] [Google Scholar]
  43. McCarthy MI, Zeggini E. Genome-wide association studies in type-2 diabetes. Curr Diab Rep 2009 ; 9 : 164–171. [CrossRef] [PubMed] [Google Scholar]
  44. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity and programming. Physiol Rev 2005 ; 85 : 571–633. [CrossRef] [PubMed] [Google Scholar]
  45. Franc C. Le diabète : des chiffres alarmants. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Junien C, Gallou-Kabani C, Gross M-L. Épigénomique nutritionnelle du syndrome métabolique. Med Sci (Paris) 2005 ; 21 : 396–404. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Cerasi E, Ktorza A. Plasticité anatomique et fonctionnelle des cellules bêta du pancréas endocrine et diabète de type 2. Med Sci (Paris) 2007 ; 23 : 885–894. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Flamment M, Foufelle F. Le stress du réticulum endoplasmique : de la physiologie à la pathogenèse du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 756–764. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Mancini A, Poitout V. Les récepteurs membranaires aux acides gras de la cellule bêta. De nouvelles cibles thérapeutiques pour le traitement du diabète de type 2 ? Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Kunjom Mfopou J, Bouwens L. Différenciation des cellules souches pluripotentes en cellules pancréatiques. Med Sci (Paris) 2013 ; 29 : 736–743. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Hinault C, Dumortier O, Van Obberghen E. MicroARN et diabète : petites structures - grands effets. Med Sci (Paris) 2013 ; 29 : 785–790. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.