Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 2, Février 2013
Page(s) 175 - 182
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013292015
Publié en ligne 28 février 2013
  1. Rose JK, Whitt MA. Rhabdoviridae: the viruses and their replication. In : Knipe DM, Howley PM, eds. Field’s virology, vol. 1. Philadelphia: Lippincott Williams and Wilkins, 2001 : 1221–1244. [Google Scholar]
  2. Letchworth GJ, Rodriguez LL, Del Cbarrera J. Vesicular stomatitis. Vet J 1999 ; 157 : 239–260. [CrossRef] [PubMed] [Google Scholar]
  3. Lichty BD, Power AT, Stojdl DF, Bell JC Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 2004 ; 10 : 211–217. [CrossRef] [Google Scholar]
  4. Libersou S, Albertini AAV, Ouldali M, et al. Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion. J Cell Biol 2010 ; 191 : 199–210. [CrossRef] [PubMed] [Google Scholar]
  5. Cureton DK, Massol RH, Saffarian S, et al. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog 2009 ; 5 : e1000394. [CrossRef] [PubMed] [Google Scholar]
  6. Albertini AAV, Baquero E, Ferlin A, Gaudin Y. Molecular and cellular aspects of Rhabdovirus Entry. Viruses 2012 ; 4 : 117–139. [CrossRef] [PubMed] [Google Scholar]
  7. Roche S, Rey FA, Gaudin Y, Bressanelli S. Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 2007 ; 315 : 843–848. [CrossRef] [PubMed] [Google Scholar]
  8. Jayakar HR, Jeetendra E, Whitt MA. Rhabdovirus assembly and budding. Virus Res 2004 ; 106 : 117–132. [CrossRef] [PubMed] [Google Scholar]
  9. Zhang X, Green TJ, Tsao J, et al. Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein in RNA encapsidation. J Virol 2008 ; 82 : 674–682. [CrossRef] [PubMed] [Google Scholar]
  10. Lyles DS, McKenzie MO, Kaptur PE, et al. Complementation of M gene mutants of vesicular stomatitis virus by plasmid-derived M protein converts spherical extracellular particles into native bullet shapes. Virology 1996 ; 217 : 76–87. [CrossRef] [PubMed] [Google Scholar]
  11. Dancho B, McKenzie MO, Connor JH, Lyles DS. Vesicular stomatitis virus matrix protein mutations that affect association with host membranes and viral nucleocapsids. J Biol Chem 2009 ; 284 : 4500–4509. [CrossRef] [PubMed] [Google Scholar]
  12. McCreedy BJJ, Lyles DS. Distribution of M protein and nucleocapsid protein of vesicular stomatitis virus in infected cell plasma membranes. Virus Res 1989 ; 14 : 189–205. [CrossRef] [PubMed] [Google Scholar]
  13. Blondel D, Harmison GG, Schubert M. Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol 1990 ; 64 : 1716–1725. [PubMed] [Google Scholar]
  14. Melki R, Gaudin Y, Blondel D. Interaction between tubulin and the viral matrix protein of vesicular stomatitis virus: possible implications in the viral cytopathic effect. Virology 1994 ; 202 : 339–347. [CrossRef] [PubMed] [Google Scholar]
  15. Ahmed M, Lyles DS., Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases I, II, and III. J Virol 1998 ; 72 : 8413–8419. [PubMed] [Google Scholar]
  16. Connor JH, Lyles DS. Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. J Virol 2002 ; 76 : 10177–10187. [CrossRef] [PubMed] [Google Scholar]
  17. Petersen JM, Her LS, Varvel V, et al. The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 2000 ; 20 : 8590–8601. [CrossRef] [PubMed] [Google Scholar]
  18. Stojdl DF, Lichty BD, tenOever BR, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003 ; 4 : 263–275. [CrossRef] [PubMed] [Google Scholar]
  19. Garcia-Sastre A, Biron CA. Type 1 Interferons and the virus-host relationship: A lesson in detente. Science 2006 ; 312 : 879–882. [CrossRef] [PubMed] [Google Scholar]
  20. Ahmed M, McKenzie MO, Puckett S, et al. Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J Virol 2003 ; 77 : 4646–4657. [CrossRef] [PubMed] [Google Scholar]
  21. Ge P, Tsao J, Schein S, et al. Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 2010 ; 327 : 689–693. [CrossRef] [PubMed] [Google Scholar]
  22. Hoffmann M, Wu Y-J, Gerber M, et al. Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J Gen Virol 2010 ; 91 : 2782–2793. [CrossRef] [PubMed] [Google Scholar]
  23. Wollmann G, Rogulin V, Simon I, et al. Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol 2010 ; 84 : 1563–1573. [CrossRef] [PubMed] [Google Scholar]
  24. Francoeur AM, Poliquin L, Stanners CP. The isolation of interferon-inducing mutants of vesicular stomatitis virus with altered viral P function for the inhibition of total protein synthesis. Virology 1987 ; 160 : 236–245. [CrossRef] [PubMed] [Google Scholar]
  25. Janelle V, Brassard F, Lapierre P, et al. Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J Virol 2011 ; 85 : 6513–6520. [CrossRef] [PubMed] [Google Scholar]
  26. Kopeky SA, WIillingham MC, Lyles DS. Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 2001 ; 75 : 12169–12181. [CrossRef] [PubMed] [Google Scholar]
  27. Desforges M, Despars G, Bérard S, et al. Matrix protein mutations contribute to inefficient induction of apoptosis leading to persistent infection of human neural cells by vesicular stomatitis virus. Virology 2002 ; 295 : 63–73. [CrossRef] [PubMed] [Google Scholar]
  28. Bateman A, Bullough F, Murphy S, et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 2000 ; 60 : 1492–1497. [PubMed] [Google Scholar]
  29. Higuchi H, Bronk SF, Bateman A, et al. Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res 2000 ; 60 : 6396–6402. [PubMed] [Google Scholar]
  30. Phan V, Errington F, Cheong SC, et al. A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell-tumor cell hybrid vaccines. Nat Med 2003 ; 9 : 1215–1219. [CrossRef] [PubMed] [Google Scholar]
  31. Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci USA 1997 ; 94 : 5843–5847. [CrossRef] [Google Scholar]
  32. Burek M, Maddika S, Burek CJ, et al. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 2005 ; 25 : 2213–2222. [CrossRef] [Google Scholar]
  33. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000 ; 6 : 821–825. [CrossRef] [PubMed] [Google Scholar]
  34. Desforges M, Charron J, Bérard S, et al. Different host-cell shutoff strategies related to the matrix protein lead to persistance of vesicular stomatitis virus mutants on fibroblast cells. Virus Res 2001 ; 76 : 87–102. [CrossRef] [PubMed] [Google Scholar]
  35. Balachandran S, Barber GN. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 2000 ; 50 : 135–138. [PubMed] [Google Scholar]
  36. Balachandran S, Barber GN. Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 2004 ; 5 : 51–65. [CrossRef] [PubMed] [Google Scholar]
  37. Stark GR, Kerr IM, Williams BR. How cells respond to interferons. Annu Rev Biochem 1998 : 227–264. [CrossRef] [PubMed] [Google Scholar]
  38. Wongthida P, Diaz RM, Galivo F, et al. VSV Oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther 2011 ; 19 : 150–158. [CrossRef] [PubMed] [Google Scholar]
  39. Georgel P, Jiang Z, Kunz S, et al. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 2007 ; 362 : 304–313. [CrossRef] [PubMed] [Google Scholar]
  40. Ahmed M, Mitchell LM, Puckett S, et al. Vesicular stomatitis virus M protein mutant stimulates maturation of Toll-like receptor 7 (TLR7)-positive dendritic cells through TLR-dependent and -independent mechanisms. J Virol 2009 ; 83 : 2962–2975. [CrossRef] [PubMed] [Google Scholar]
  41. Dock G. Influence of complicating diseases upon leukemia. Am J Med Sci 1904 ; 127 : 563–592. [CrossRef] [Google Scholar]
  42. Lemay G. Apprivoiser nos ennemis pour en faire des alliés : la « virothérapie » anticancéreuse. Med Sci (Paris) 2012 ; 28 : 339–340. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Kelly EJ, Nace R, Barber GN, Russell SJ. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 2010 ; 84 : 1550–1562. [CrossRef] [PubMed] [Google Scholar]
  44. Qiao J, Kottke T, Willmon C, et al. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat Med 2008 ; 14 : 37–44. [CrossRef] [PubMed] [Google Scholar]
  45. Doronin K, Shashkova EV, May SM, et al. Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum Gene Ther 2009 ; 20 : 975–988. [CrossRef] [PubMed] [Google Scholar]
  46. Génin P, Lin R, Hiscott J, Civas A., Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression. PLoS One 2012 ; 7 : e38336. [CrossRef] [PubMed] [Google Scholar]
  47. Fulci G, Breymann L, Gianni D, et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 2006 ; 103 : 12873–12878. [CrossRef] [Google Scholar]
  48. Le Boeuf F, Diallo J-S, McCart JA, et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 2010 ; 18 : 888–895. [CrossRef] [PubMed] [Google Scholar]
  49. Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: Molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 2008 ; 1785 : 217–231. [PubMed] [Google Scholar]
  50. Fu X, Zhang X. Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 2002 ; 62 : 2306–2312. [PubMed] [Google Scholar]
  51. Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 2009 ; 11 : 43–53. [PubMed] [Google Scholar]
  52. Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002 ; 86 : 5–11. [CrossRef] [PubMed] [Google Scholar]
  53. Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 2011 ; 477 : 99–102. [CrossRef] [PubMed] [Google Scholar]
  54. Touchefeu Y, Schick U, Harrington KJ. Le virus de la rougeole. Med Sci (Paris) 2012 ; 28 : 388–394. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Galanis E, Markovic SN, Suman VJ, et al. Phase II trial of intravenous administration of reolysin[reg] (Reovirus serotype-3-dearing strain) in patients with metastatic melanoma. Mol Ther 2012 ; 20 : 1998–2003. [CrossRef] [PubMed] [Google Scholar]
  56. Apetoh L, Ghiringelli F, Zitvogel L. La calréticuline détermine l’immunogénicité de la chimiothérapie et de la radiothérapie antitumorales. Med Sci (Paris) 2007 ; 23 : 257–258. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Pol J, Le Boeuf F, Diallo JS. Stratégies génétiques, immunologiques et pharmacologiques au service d’une nouvelle génération de virus anticancéreux. Med Sci (Paris) 2013 : s29. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.