Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 1, Janvier 2013
Page(s) 36 - 38
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2013291012
Publié en ligne 25 janvier 2013
  1. Dighiero G, Binet JL. Chronic lymphocytic leukemia. Hematol Cell Ther 1996 ; 38 : S41–S61. [PubMed] [Google Scholar]
  2. Ma S, Rosen ST. Signal transduction inhibitors in chronic lymphocytic leukemia. Curr Opin Oncol 2011 ; 23 : 601–608. [CrossRef] [PubMed] [Google Scholar]
  3. Cheson BD. Current approaches to the chemotherapy of B-cell chronic lymphocytic leukemia: a review. Am J Hematol 1989 ; 32 : 72–77. [CrossRef] [PubMed] [Google Scholar]
  4. Robak T, Lech-Maranda E, Robak P. Rituximab plus fludarabine and cyclophosphamide or other agents in chronic lymphocytic leukemia. Exp Rev Anticancer Ther 2010 ; 10 : 1529–1543. [CrossRef] [Google Scholar]
  5. Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC. Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol 2003 ; 4 : 211–218. [CrossRef] [PubMed] [Google Scholar]
  6. Kitada S, Andersen J, Akar S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998 ; 91 : 3379–3389. [PubMed] [Google Scholar]
  7. Gottardi D, Alfarano A, De Leo AM, et al. In leukaemic CD5+ B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis. Br J Haematol 1996 ; 94 : 612–618. [CrossRef] [PubMed] [Google Scholar]
  8. Oltra AM, Carbonell F, Tormos C, et al. Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic Biol Med 2001 ; 30 : 1286–1292. [CrossRef] [PubMed] [Google Scholar]
  9. Trachootham D, Zhang H, Zhang W, et al. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 2008 ; 112 : 1912–1922. [CrossRef] [PubMed] [Google Scholar]
  10. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006 ; 6 : 392–401. [CrossRef] [PubMed] [Google Scholar]
  11. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009 ; 114 : 3367–3375. [CrossRef] [PubMed] [Google Scholar]
  12. Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999 ; 94 : 3658–3667. [PubMed] [Google Scholar]
  13. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 2002 ; 43 : 461–466. [CrossRef] [PubMed] [Google Scholar]
  14. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005 ; 106 : 1824–1830. [CrossRef] [PubMed] [Google Scholar]
  15. Collins RJ, Verschuer LA, Harmon BV, et al. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989 ; 71 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  16. Silber R, Farber CM, Papadopoulos E, et al. Glutathione depletion in chronic lymphocytic leukemia B lymphocytes. Blood 1992 ; 80 : 2038–2043. [PubMed] [Google Scholar]
  17. Lagneaux L, Delforge A, Bron D, et al. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998 ; 91 : 2387–2396. [PubMed] [Google Scholar]
  18. Chiorazzi N, Ferrarini M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003 ; 21 : 841–894. [CrossRef] [PubMed] [Google Scholar]
  19. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005 ; 106 : 1824–1830. [CrossRef] [PubMed] [Google Scholar]
  20. Berger MG, Berger J, Richard C, et al. Preferential sensitivity of hematopoietic (HPs) and mesenchymal (MPs) progenitors to fludarabine suggests impaired bone marrow niche and HP mobilization. Leukemia 2008 ; 22 : 2131–2134. [CrossRef] [PubMed] [Google Scholar]
  21. Zhang W, Huang P. Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity. Cancer Biol Ther 2011 ; 11 : 150–156. [CrossRef] [PubMed] [Google Scholar]
  22. Zhang W, Trachootham D, Liu J, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 2012 ; 14 : 276–286. [CrossRef] [PubMed] [Google Scholar]
  23. Bichi R, Shinton SA, Martin ES, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002 ; 99 : 6955–6960. [CrossRef] [Google Scholar]
  24. Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.