Free Access
Issue
Med Sci (Paris)
Volume 29, Number 1, Janvier 2013
Page(s) 36 - 38
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2013291012
Published online 25 January 2013
  1. Dighiero G, Binet JL. Chronic lymphocytic leukemia. Hematol Cell Ther 1996 ; 38 : S41–S61. [PubMed] [Google Scholar]
  2. Ma S, Rosen ST. Signal transduction inhibitors in chronic lymphocytic leukemia. Curr Opin Oncol 2011 ; 23 : 601–608. [CrossRef] [PubMed] [Google Scholar]
  3. Cheson BD. Current approaches to the chemotherapy of B-cell chronic lymphocytic leukemia: a review. Am J Hematol 1989 ; 32 : 72–77. [CrossRef] [PubMed] [Google Scholar]
  4. Robak T, Lech-Maranda E, Robak P. Rituximab plus fludarabine and cyclophosphamide or other agents in chronic lymphocytic leukemia. Exp Rev Anticancer Ther 2010 ; 10 : 1529–1543. [CrossRef] [Google Scholar]
  5. Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC. Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol 2003 ; 4 : 211–218. [CrossRef] [PubMed] [Google Scholar]
  6. Kitada S, Andersen J, Akar S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998 ; 91 : 3379–3389. [PubMed] [Google Scholar]
  7. Gottardi D, Alfarano A, De Leo AM, et al. In leukaemic CD5+ B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis. Br J Haematol 1996 ; 94 : 612–618. [CrossRef] [PubMed] [Google Scholar]
  8. Oltra AM, Carbonell F, Tormos C, et al. Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic Biol Med 2001 ; 30 : 1286–1292. [CrossRef] [PubMed] [Google Scholar]
  9. Trachootham D, Zhang H, Zhang W, et al. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 2008 ; 112 : 1912–1922. [CrossRef] [PubMed] [Google Scholar]
  10. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006 ; 6 : 392–401. [CrossRef] [PubMed] [Google Scholar]
  11. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009 ; 114 : 3367–3375. [CrossRef] [PubMed] [Google Scholar]
  12. Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999 ; 94 : 3658–3667. [PubMed] [Google Scholar]
  13. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 2002 ; 43 : 461–466. [CrossRef] [PubMed] [Google Scholar]
  14. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005 ; 106 : 1824–1830. [CrossRef] [PubMed] [Google Scholar]
  15. Collins RJ, Verschuer LA, Harmon BV, et al. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989 ; 71 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  16. Silber R, Farber CM, Papadopoulos E, et al. Glutathione depletion in chronic lymphocytic leukemia B lymphocytes. Blood 1992 ; 80 : 2038–2043. [PubMed] [Google Scholar]
  17. Lagneaux L, Delforge A, Bron D, et al. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998 ; 91 : 2387–2396. [PubMed] [Google Scholar]
  18. Chiorazzi N, Ferrarini M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003 ; 21 : 841–894. [CrossRef] [PubMed] [Google Scholar]
  19. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005 ; 106 : 1824–1830. [CrossRef] [PubMed] [Google Scholar]
  20. Berger MG, Berger J, Richard C, et al. Preferential sensitivity of hematopoietic (HPs) and mesenchymal (MPs) progenitors to fludarabine suggests impaired bone marrow niche and HP mobilization. Leukemia 2008 ; 22 : 2131–2134. [CrossRef] [PubMed] [Google Scholar]
  21. Zhang W, Huang P. Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity. Cancer Biol Ther 2011 ; 11 : 150–156. [CrossRef] [PubMed] [Google Scholar]
  22. Zhang W, Trachootham D, Liu J, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 2012 ; 14 : 276–286. [CrossRef] [PubMed] [Google Scholar]
  23. Bichi R, Shinton SA, Martin ES, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002 ; 99 : 6955–6960. [CrossRef] [Google Scholar]
  24. Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.