Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 1, Janvier 2012
Page(s) 69 - 75
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012281019
Publié en ligne 27 janvier 2012
  1. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993 ; 67 : 2168–2174. [PubMed] [Google Scholar]
  2. Dubrez-Daloz L, Dupoux A, Cartier J. IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 2008 ; 7 : 1036–1046. [CrossRef] [PubMed] [Google Scholar]
  3. Dynek JN, Vucic D. Antagonists of IAP proteins as cancer therapeutics. Cancer Lett 2010 ; doi: 10.1016/j.canlet.2010.06.013. [Google Scholar]
  4. Broemer M, Tenev T, Rigbolt KT, et al. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 2010 ; 40 : 810–822. [CrossRef] [PubMed] [Google Scholar]
  5. Gyrd-Hansen M, Darding M, Miasari M, et al. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 2008 ; 10 : 1309–1317. [CrossRef] [PubMed] [Google Scholar]
  6. Lopez J, John SW, Tenev T, et al. CARD-mediated autoinhibition of cIAP1’s E3 ligase activity suppresses cell proliferation and migration. Mol Cell 2011 ; 142 : 569–583. [CrossRef] [Google Scholar]
  7. Dupoux A, Cartier J, Cathelin S, et al. cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 2009 ; 113 : 175–185. [CrossRef] [PubMed] [Google Scholar]
  8. Tseng PH, Matsuzawa A, Zhang W, et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010 ; 11 : 70–75. [CrossRef] [PubMed] [Google Scholar]
  9. Mao AP, Li S, Zhong B, et al. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem 2010 ; 285 : 9470–9476. [CrossRef] [PubMed] [Google Scholar]
  10. Bertrand MJ, Doiron K, Labbe K, et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 2009 ; 30 : 789–801. [CrossRef] [PubMed] [Google Scholar]
  11. Bertrand MJ, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008 ; 30 : 689–700. [CrossRef] [PubMed] [Google Scholar]
  12. Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007 ; 131 : 669–681. [CrossRef] [PubMed] [Google Scholar]
  13. Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008 ; 9 : 1371–1378. [CrossRef] [PubMed] [Google Scholar]
  14. Lu M, Lin SC, Huang Y, et al. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007 ; 26 : 689–702. [CrossRef] [PubMed] [Google Scholar]
  15. Neil JR, Tian M, Schiemann WP. X-linked inhibitor of apoptosis protein and its E3 ligase activity promote transforming growth factor-{beta}-mediated nuclear factor-{kappa}B activation during breast cancer progression. J Biol Chem 2009 ; 284 : 21209–21217. [CrossRef] [PubMed] [Google Scholar]
  16. Hinz M, Stilmann M, Arslan SC, et al. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell 2010 ; 40 : 63–74. [CrossRef] [PubMed] [Google Scholar]
  17. Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008 ; 9 : 1364–1370. [CrossRef] [PubMed] [Google Scholar]
  18. Baud V, Jacque E. Voie alternative d’activation de NF-κB et cancer : amis ou ennemis ? Med Sci (Paris) 2008 ; 24 : 1083–1088. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011 ; 471 : 591–596. [CrossRef] [PubMed] [Google Scholar]
  20. Jin HS, Lee DH, Kim DH, et al. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res 2009 ; 69 : 1782–1791. [CrossRef] [PubMed] [Google Scholar]
  21. Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007 ; 12 : 115–130. [CrossRef] [PubMed] [Google Scholar]
  22. Vince JE, Chau D, Callus B, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008 ; 182 : 171–184. [CrossRef] [PubMed] [Google Scholar]
  23. Gesellchen V, Kuttenkeuler D, Steckel M, et al. An RNA interference screen identifies inhibitor of apoptosis protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep 2005 ; 6 : 979–984. [CrossRef] [PubMed] [Google Scholar]
  24. Paquette N, Broemer M, Aggarwal K, et al. Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling. Mol Cell 2010 ; 37 : 172–182. [CrossRef] [PubMed] [Google Scholar]
  25. Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007 ; 12 : 445–456. [CrossRef] [PubMed] [Google Scholar]
  26. Lucas PC, Kuffa P, Gu S, et al. A dual role for the API2 moiety in API2-MALT1-dependent NF-kappaB activation: heterotypic oligomerization and TRAF2 recruitment. Oncogene 2007 ; 26 : 5643–5654. [CrossRef] [PubMed] [Google Scholar]
  27. Rigaud S, Latour S. XIAP, un gène anti-apoptotique muté dans un nouveau syndrome lymphoprolifératif lié à l’X (XLP). Med Sci (Paris) 2007 ; 23 : 235–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Xu L, Zhu J, Hu X, et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell 2007 ; 28 : 914–922. [CrossRef] [PubMed] [Google Scholar]
  29. Cartier J, Berthelet J, Marivin A, et al. Cellular inhibitor of apoptosis protein-1 (ciap1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem 2011 ; 286 : 26406–26417. [CrossRef] [PubMed] [Google Scholar]
  30. Santoro MM, Samuel T, Mitchell T, et al. Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet 2007 ; 39 : 1397–1402. [CrossRef] [PubMed] [Google Scholar]
  31. Gautheron J, Courtois G. Les nouvelles fonctions de NEMO, la sous-unité régulatrice de la kinase activant NF-κB. Med Sci (Paris) 2008 ; 24 : 954–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Prix Nobel de médecine 2011. Med Sci (Paris) 2011 ; 27 : 1019–1024. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.