Accès gratuit
Med Sci (Paris)
Volume 27, Numéro 12, Décembre 2011
Page(s) 1112 - 1120
Section M/S Revues
Publié en ligne 23 décembre 2011
  1. Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V. The role of neutrophils and monocytes in innate immunity. Contrib Microbiol 2008 ; 15 : 118–146. [CrossRef] [PubMed] [Google Scholar]
  2. Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des 2005 ; 11 : 569–580. [CrossRef] [PubMed] [Google Scholar]
  3. Qualls JE, Murray PJ. A double agent in cancer: stopping macrophages wounds tumors. Nat Med 2010 ; 16 : 863–864. [CrossRef] [PubMed] [Google Scholar]
  4. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010 ; 10 : 427–439. [CrossRef] [PubMed] [Google Scholar]
  5. Petri B, Phillipson M, Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol 2008 ; 180 : 6439–6446. [PubMed] [Google Scholar]
  6. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007 ; 317 : 666–70. [CrossRef] [PubMed] [Google Scholar]
  7. Carman CV. Mechanisms for transcellular diapedesis: probing and pathfinding by invadosome-like protrusions. J Cell Sci 2009 ; 122 : 3025–3035. [CrossRef] [PubMed] [Google Scholar]
  8. Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how? Trends Cell Biol 2008 ; 18 : 560–574. [CrossRef] [PubMed] [Google Scholar]
  9. Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 2010 ; 11 : 366–378. [CrossRef] [PubMed] [Google Scholar]
  10. Hirche TO, Atkinson JJ, Bahr S, Belaaouaj A. Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol 2004 ; 30 : 576–584. [CrossRef] [PubMed] [Google Scholar]
  11. Voisin MB, Woodfin A, Nourshargh S. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arterioscler Thromb Vasc Biol 2009 ; 29 : 1193–1199. [CrossRef] [PubMed] [Google Scholar]
  12. Huber AR, Weiss SJ. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest 1989 ; 83 : 1122–1136. [CrossRef] [PubMed] [Google Scholar]
  13. Agrawal S, Anderson P, Durbeej M, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 2006 ; 203 : 1007–1019. [CrossRef] [PubMed] [Google Scholar]
  14. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003 ; 5 : 711–719. [CrossRef] [PubMed] [Google Scholar]
  15. Friedl P, Zanker KS, Brocker EB. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 1998 ; 43 : 369–378. [CrossRef] [PubMed] [Google Scholar]
  16. Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 2006 ; 18 : 463–471. [CrossRef] [PubMed] [Google Scholar]
  17. Charras G, Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 2008 ; 9 : 730–736. [CrossRef] [PubMed] [Google Scholar]
  18. Renkawitz J, Sixt M. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 2010 ; 11 : 744–750. [CrossRef] [PubMed] [Google Scholar]
  19. Wyckoff JB, Pinner SE, Gschmeissner S, et al. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006 ; 16 : 1515–1523. [CrossRef] [PubMed] [Google Scholar]
  20. Wolf K, Alexander S, Schacht V, et al. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 2009 ; 20 : 931–941. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol 2008 ; 9 : 960–969. [CrossRef] [PubMed] [Google Scholar]
  22. Lammermann T, Bader BL, Monkley SJ, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008 ; 453 : 51–55. [CrossRef] [PubMed] [Google Scholar]
  23. Khandoga AG, Khandoga A, Reichel CA, et al. In vivo imaging, quantitative analysis of leukocyte directional migration, polarization in inflamed tissue. PLoS One 2009 ; 4 : e4693. [CrossRef] [PubMed] [Google Scholar]
  24. Ichiyasu H, McCormack JM, McCarthy KM, et al. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions. Am J Respir Cell Mol Biol 2004 ; 30 : 761–770. [CrossRef] [PubMed] [Google Scholar]
  25. Yen JH, Khayrullina T, Ganea D. PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood 2008 ; 111 : 260–270. [CrossRef] [PubMed] [Google Scholar]
  26. Cougoule C, Le Cabec V, Poincloux R, et al. Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2010 ; 115 : 1444–1452. [CrossRef] [PubMed] [Google Scholar]
  27. Moutasim KA, Nystrom ML, Thomas GJ. Cell migration and invasion assays. Methods Mol Biol 2011 ; 731 : 333–343. [CrossRef] [PubMed] [Google Scholar]
  28. Stock C, Schwab A. Protons make tumor cells move like clockwork. Pflug Arch Eur J Physiol 2009 ; 458 : 981–992. [CrossRef] [Google Scholar]
  29. Genot E. Les podosomes endothéliaux. Med Sci (Paris) 2009 ; 25 : 168–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Kobayashi T, Sokabe M. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 2010 ; 22 : 669–676. [CrossRef] [PubMed] [Google Scholar]
  31. Colvin RA, Means TK, Diefenbach TJ, et al. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol 2010 ; 11 : 495–502. [CrossRef] [PubMed] [Google Scholar]
  32. Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science 2003 ; 302 : 1704–1709. [CrossRef] [PubMed] [Google Scholar]
  33. Roberts AW, Kim C, Zhen L, et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 1999 ; 10 : 183–196. [CrossRef] [PubMed] [Google Scholar]
  34. Swetman CA, Leverrier Y, Garg R, et al. Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur J Immunol 2002 ; 32 : 2074–2083. [CrossRef] [PubMed] [Google Scholar]
  35. Wheeler AP, Wells CM, Smith SD, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 2006 ; 119 : 2749–2757. [CrossRef] [PubMed] [Google Scholar]
  36. Oakes PW, Patel DC, Morin NA, et al. Neutrophil morphology and migration are affected by substrate elasticity. Blood 2009 ; 114 : 1387–1395. [CrossRef] [PubMed] [Google Scholar]
  37. Wilson CA, Tsuchida MA, Allen GM, et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 2010 ; 465 : 373–377. [CrossRef] [PubMed] [Google Scholar]
  38. Fereol S, Fodil R, Laurent VM, et al. Mechanical and structural assessment of cortical and deep cytoskeleton reveals substrate-dependent alveolar macrophage remodeling. Biomed Mater Eng 2008 ; 18 : S105–S118. [PubMed] [Google Scholar]
  39. Linder S. Invadosomes at a glance. J Cell Sci 2009 ; 122 : 3009–3013. [CrossRef] [PubMed] [Google Scholar]
  40. Van Goethem E, Guiet R, Balor S, et al. Macrophage podosomes go 3D. Eur J Cell Biol 2011 ; 90 : 224–236. [CrossRef] [PubMed] [Google Scholar]
  41. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2009 ; 188 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  42. Mandeville JT, Lawson MA, Maxfield FR. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukoc Biol 1997 ; 61 : 188–200. [PubMed] [Google Scholar]
  43. Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 2009 ; 185 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  44. Wolf K, Muller R, Borgmann S, et al. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 2003 ; 102 : 3262–3269. [CrossRef] [PubMed] [Google Scholar]
  45. Van Goethem E, Poincloux R, Gauffre F, et al. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 2010 ; 184 : 1049–1061. [CrossRef] [PubMed] [Google Scholar]
  46. Cougoule C, Carreno S, Castandet J, et al. Activation of the lysosome-associated p61Hck isoform triggers the biogenesis of podosomes. Traffic 2005 ; 6 : 682–694. [CrossRef] [PubMed] [Google Scholar]
  47. Wiesner C, Faix J, Himmel M, et al. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 2010 ; 116 : 1559–1569. [CrossRef] [PubMed] [Google Scholar]
  48. Guiet R, Van Goethem E, Cougoule C, et al. The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumour cells. J Immunol 2011 ; 187 : 3806–3814. [CrossRef] [PubMed] [Google Scholar]
  49. Destaing O, Block MR, Planus E, Albiges-Rizo C. Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011 ; 23 : 597–606. [CrossRef] [PubMed] [Google Scholar]
  50. Labernadie A, Thibault C, Vieu C, et al. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci USA 2010 ; 107 : 21016–21021. [CrossRef] [Google Scholar]
  51. Vérollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I. Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol 2011 ; 41 : 2805–2813. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.