Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 10, Octobre 2011
Page(s) 866 - 874
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112710015
Publié en ligne 21 octobre 2011
  1. Testart J. Des ovules en abondance ? Med Sci (Paris) 2004 ; 20 : 1041–1044. [CrossRef] [EDP Sciences] [PubMed]
  2. Guenatri M, Bourc’his D. Sperme express : est-il possible de produire des gamètes mâles in vitro en trois jours ? Med Sci (Paris) 2007 ; 23 : 619–625. [CrossRef] [EDP Sciences] [PubMed]
  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed]
  4. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed]
  5. Clark AT, Bodnar MS, Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004 ; 13 : 727–739. [CrossRef] [PubMed]
  6. Kurimoto K, Yabuta Y, Ohinata Y, et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 2008 ; 22 : 1617–1635. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  7. Bucay N, Yebra M, Cirulli V, et al. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells 2008 ; 27 : 68–77. [CrossRef]
  8. Kee K, Angeles VT, Flores M, et al. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009 ; 462 : 222–225. [CrossRef] [PubMed]
  9. Saunders PT, Turner JM, Ruggiu M, et al. Absence of mDazl produces a final block on germ cell development at meiosis. Reproduction 2003 ; 126 : 589–597. [CrossRef] [PubMed]
  10. Tanaka SS, Toyooka Y, Akasu R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000 ; 14 : 841–853. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  11. Tilgner K, Atkinson SP, Golebiewska A, et al. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008 ; 26 : 3075–3085. [CrossRef] [PubMed]
  12. Payer B, Chuva de Sousa Lopes SM, Barton SC, et al. Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 2006 ; 44 : 75–83. [CrossRef] [PubMed]
  13. Park TS, Galic Z, Conway AE, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal. Stem Cells 2009 ; 27 : 783–795. [CrossRef] [PubMed]
  14. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol 2010 ; 205 : 117–131. [CrossRef] [PubMed]
  15. West F, Machacek D, Boyd N, et al. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells 2008 ; 26 : 2768–2776. [CrossRef] [PubMed]
  16. Aflatoonian B, Ruban L, Jones M, et al. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum Reprod 2009 ; 24 : 3150–3159. [CrossRef] [PubMed]
  17. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2003 ; 427 : 148–154. [CrossRef] [PubMed]
  18. Silva C, Wood JR, Salvador L, et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev 2009 ; 76 : 11–21. [CrossRef] [PubMed]
  19. Nayernia K, Nolte J, Michelmann HW, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006 ; 11 : 1125–1132. [CrossRef]
  20. Toyooka Y, Tsunekawa N, Akasu R, et al. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003 ; 100 : 11457–11462. [CrossRef]
  21. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000 ; 21 : 200–214. [CrossRef] [PubMed]
  22. Chen HF, Kuo HC, Chien CL, et al.Derivation, characterization and differentiation of human embryonic stem cells : comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 2007 ; 22 : 567–577. [CrossRef] [PubMed]
  23. Novak I, Lightfoot DA, Wang H, et al. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 2006 ; 24 : 1931–1936. [CrossRef] [PubMed]
  24. Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 2005 ; 24 : 266–273. [CrossRef] [PubMed]
  25. Qing T, Shi Y, Qin H, et al. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 2007 ; 75 : 902–911. [PubMed]
  26. Pesce M, Wang X, Wolgemuth DJ, et al. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998 ; 71 : 89–98. [CrossRef] [PubMed]
  27. Hübner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003 ; 300 : 1251–1256. [CrossRef] [PubMed]
  28. Nicholas CR, Haston KM, Grewall AK, et al. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet 2009 ; 18 : 4376–4389. [CrossRef] [PubMed]
  29. Salvador L, Silva C, Kostetskii I, et al. The promoter of the oocyte-specific gene, Gdf9, is active in population of cultured mouse embryonic with an oocyte-like phenotype methods. Stem Cells 2008 ; 45 : 172–181.
  30. Méduri G, Courtillot C, Lahuna O, et al. Spermatogenèse normale chez un homme avec défaut génétique de la LH. Med Sci (Paris) 2010 ; 26 : 690–693. [CrossRef] [EDP Sciences] [PubMed]
  31. Terret ME, Wassmann K. Le point faible méiotique : la première division. Med Sci (Paris) 2008 ; 24 : 197–203. [CrossRef] [EDP Sciences] [PubMed]
  32. Grey C, Sommermeyer V, Borde V, de Massy B. Déterminants de la carte génétique : le rôle-clé de la spécification des sites de recombinaison méiotique. Med Sci (Paris) 2011 ; 27 : 63–69. [CrossRef] [EDP Sciences] [PubMed]
  33. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte parentale. Med Sci (Paris) 2005 ; 21 : 390–395. [CrossRef] [EDP Sciences] [PubMed]
  34. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie. Med Sci (Paris) 2008 ; 24 : 747–752. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.